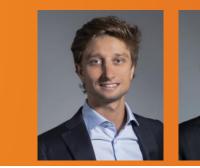
A Data-Driven Approach to Forecasting the US Beer Industry

F.Caprasse - A. Scaglia R.Mazumder – W.Chen Faculty Company H. Wakil-Moyses



Project Overview

Anheuser-Busch InBev

The world's largest brewer (~45% market share in the US) with approximately 500 beer brands and \$16B in sales.

Project Importance

- Yearly forecasts of the industry's size are critical to better understand the coming trends, adjust their strategy accordingly and define the company's targets and strategy.
- Historically done manually. Opportunity to use enriched dataset to derive unique insights.

Scope and Objectives

Forecasting

2020 U.S. beer market industry forecast

2020 Industry forecast for the 1140 designated market areas (DMA)/Segments

Key Factors

- Identify the key factors that influence the growth of the industry
- Quantify the impact of each factor on the industry sales

Recommendations

- Optimal resource allocation
- Insightful strategic decisions: how to tweak internal factors for maximum performance

Simulation Tool

- Develop tool to simulate different scenarios
- Maintainability and interpretability

Data

Internal Sources

• Sales Data The Beer Institute of Research (BIR). aggregates, anonymizes and redistributes monthly industry data ABI. The data is aggregated by wholesaler and product segment (47 months of data)

• Pricing Data Major competitors tend to align their prices on ABI's. Shifts in the overall industry are led by ABI, hence using their pricing data as the industry's is a reasonable business assumption.

External Sources

- Calendar Data The number of selling days (weekdays) in a month, important holidays and events.
- Weather Data Beer sales are highly seasonal and are influenced by temperature and precipitation that can have a high impact on consumption.
- Econometric Data Every DMA has its own context, demographics, history, and preferences (e.g. population).

Challenges and Preprocessing

Business Requirements

- Interpretable models for non-technical employees
- Certain features need to be included (price, weather, etc.)
- Business sense of coefficients and impact of features

Aggregation

DMA/Segment aggregation \rightarrow 47 monthly data points for 1140 models (June 2015 – April 2019)

Target Generation

Monthly Trend: percentage change of the industry sales volume for each month compared to the same month the previous year \rightarrow lose 12 months of data

Feature Engineering

- Ewma6: 6-month exponential weighted moving average of the trend \rightarrow lose 6 months of data
- **Price**: Percentage price change
- Temperature: Absolute average temperature change
- Weekdays and Holidays: Change in number of weekdays in the month w.r.t. the previous year

Train, Predict, Validation Procedure

- Split: Ordered split 80% 20% (lose 6 data points)
- Iterative prediction: predict one month at a time and recompute ewma6 at each step
- Validation: Score the models with cross-validation on both monthly MAE and aggregated MAE
- Performance metrics:
 - o Monthly MAE -> MAE on the monthly trend predictions
 - o Aggregated MAE → Error on the trend predictions aggregated for the entire test set (6 months).

New York NY

Project Timeline

On-Campus Research On-site Internship February/March May July April August June Feature Engineering Modeling – Phase 3&4 Tool Building Model Selection Modeling – Phase 1 & 2 Recommendation

4-phase Modeling

1. Time Series

Seasonal ARIMAs with exogeneous variables

- + Very powerful
- + Works well with little data + Automatically deals with
- seasonality
- Very complex
- Not easily interpretable Little control on the
- parameters

2. Interpretability

Linear regression with hand crafted features

- + Very simple
- + Interpretable
- + Fully flexible
- Medium performance
- Needs more data than available
- Needs to be coded from scratch

3. Generalization

Constrained and regularized regressions

- + Better generalisation
- + Positive coefficients
- + Fully flexible
- + Deals well with high dimensionality
- More complex
- Some coefficients are set to zero
- Needs to be coded from scratch

4. Fine-tuning

Clustered models

Cluster DMAs. Optimize convex combination of individual and clustered model

- + Train on more data
- + Identify trends common to DMAs
- Lose interpretability
- Dependent on clusters
- Needs to be coded from scratch

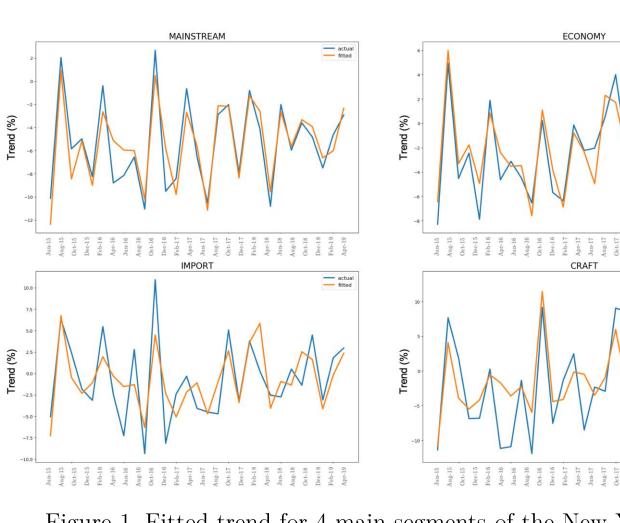
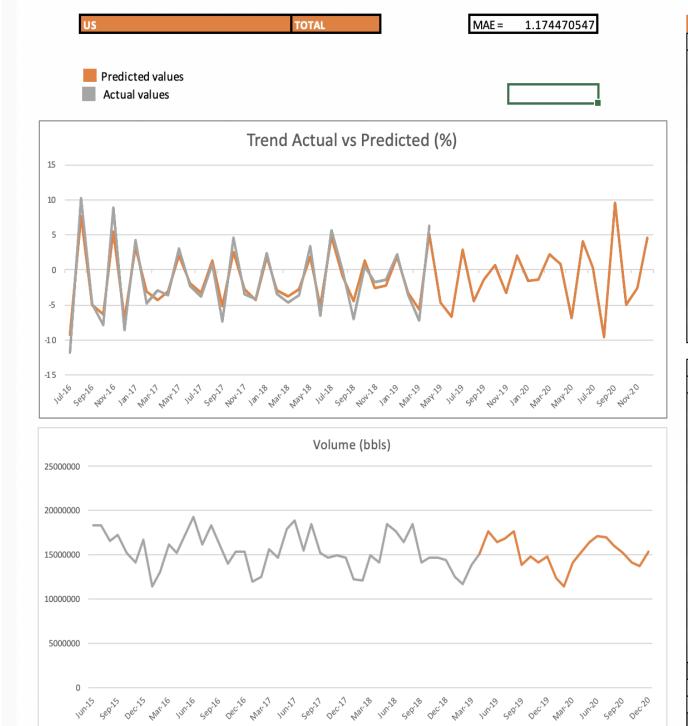


Figure 1. Fitted trend for 4 main segments of the New York DMA

Final Models: 1140 Linear Regression with L1-Norm regularization and non-negative coefficients, no clustering 0.17 MAE on aggregated US trend predictions which exceeds ABI's expectation

Impact: Visualization and simulation Tool

DASHBOARD DMA & SEGMENT PREDICTIONS



	Industry Model Year				
	2016	2017	2018	2019	2020
Drivers - var%					
ntercept					
Trend Season		0.00%	0.00%	0.00%	0.00%
Price		0.00%	0.00%	0.00%	1.50%
Average Temperature		0.00	0.00	0.00	0.00
Monday		-0.0203	0.0619	-0.0708	0.0083
Tuesday		-0.0319	-0.0160	0.0555	-0.0843
Wednesday		-0.0101	-0.0210	-0.0113	0.0627
Thursday		0.0111	-0.0051	-0.0139	0.0634
Friday		-0.0398	0.0192	0.0050	-0.0078
Saturday		-0.0488	0.0231	0.0249	-0.0017
Super Bowl		-0.0172	-0.0027	0.0011	0.0050
Fourth of July		0.0000	-0.0179	-0.0065	0.0000
Cinco de Mayo		0.0114	-0.0174	-0.0238	-0.0144
Labor Day		0.0104	0.0179	0.0000	-0.0833
Easter		-0.0235	0.0262	-0.0212	0.0000
Impacts %					
Drivers - var%	Elasticities				
intercept	0.00%				
Trend Season	0.00%	0.0%	0.0%	0.0%	0.0%
Price	-44.84%	0.0%	0.0%	0.0%	-0.7%
Average Temperature	0.00%	0.0%	0.0%	0.0%	0.0%
Monday	0.00%	0.0%	0.0%	0.0%	0.0%
Tuesday	0.00%	0.0%	0.0%	0.0%	0.0%
Wednesday	0.00%	0.0%	0.0%	0.0%	0.0%
Thursday	0.00%	0.0%	0.0%	0.0%	0.0%
Friday	0.00%	0.0%	0.0%	0.0%	0.0%
Saturday	0.00%	0.0%	0.0%	0.0%	0.0%
Super Bowl	0.00%	0.0%	0.0%	0.0%	0.0%
Fourth of July	0.00%	0.0%	0.0%	0.0%	0.0%
Cinco de Mayo	0.00%	0.0%	0.0%	0.0%	0.0%
Labor Day	0.00%	0.0%	0.0%	0.0%	0.0%
Easter	0.00%	0.0%	0.0%	0.0%	0.0%
Market Growth forecast		0.0%	0.0%	0.0%	-0.7%
Market Growth (actual/forecast)		-1.7%	-1.4%	-1.6%	-0.7%
Volume (actual / forecast) (000' bbls)	188,447	185,169	182,556	179,564	178,36
Trend Delta from actuals		1.7%	1.4%	4 60/	0.0050/

Next Steps

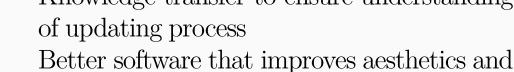
The results achieved improve significantly on the company's previous status quo. Next steps to explore are:

Implementation

Knowledge transfer

Comparison with current methods

Maintainability Knowledge transfer to ensure understanding



maintainability (e.g. Tableau) Improvement of algorithm

- More data (weekly or zip code level) Predict on a more granular level (e.g.
- wholesaler) Advanced methods (e.g. further exploration of clustering and convex optimization)
- Relaxation of business constraints

After refining the model further, we recommending running field experiment with an interesting DMA (e.g. Houston)