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Problem Statement and Solution Data & Scope: The EvaluatePharma Dataset

Our aim is to develop a robust, easy-to-maintain LLM-based tool to enable Accenture consultants to efficiently | ==
query proprietary life sciences data, thereby helping Accenture clients in the pharmaceutical industry better- . “"Eﬂﬂé" ‘:
understand their competitive landscape. ' S )= D
Accenture Life Science Consultants need timely, accurate insights into the competitive landscapes of Accenture | CRorporateéFlinaggiSICData ol TPr%det Dalt%. ' p-C"PicaéTrialTS- Dallta
clients, drawn from complex relational databases. | evenue, vates, ost ales, Technology, Indication  Fipeline, Lost, Timeline
Interacting with consultants, manually pulling data, and iteratively refining queries can take up to 2-3 business days I Industry Leading Life Science Market Intelligence Dataset
per analysis for Life Science researchers, delaying strategic recommendations and exposing teams to manual-entry . 2000-2030 (Forecast)

errors. I
We propose a multi-agent SQL Agent that translates plain-English prompts into SQL code, leverages additional
semantic understanding to navigate schema relationships, and self-refines its performance in a closed loop,
delivering reproducible, high-confidence insights in ~1 minute. I
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3.1. Automatic Prompt-Refinement

Motivation:
Manual prompt engineering for LLM-powered SQL generation is laborious and fragile: 1 475l
engineers must iteratively tweak system messages, few-shot examples, and parameters to .
handle schema nuances and edge cases.

Solution: We equip the SQL Agent with a closed-loop self-refinement pipeline:
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Agent Performance Metrics Over Refinement Iterations Average Reasoning Time per Question Over Refinement Iterations
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3.3. Answer Quality Evaluation Framework 3.4. Semantic Understanding Module

We employ an LLM-as-Judge to quantify SQL answer quality across three dimensions: - We augment the core SQL pipeline with an intelligent helper agent, the Table Expert.
Correctness, Clarity, and Relevance. For each user query, the SQL Agent’s output is fed into a | Upon receiving the analyst’s natural-language question, it internally:
structured judge prompt that returns numeric scores (1-5) on each metric. I

: 1. Ingests the natural language query.
l 2. Consults its prompt memory of schema definitions and representative column values.

1. Correctness: - 3. Performs a lightweight semantic match to pick the top relevant tables and columns.
Measures syntactic validity, adherence to I 4. Emits a structured hint string appended to the Planner Agent’s context.
foreign-key joins and aggregation logic. I
] 2. Clarity I Performance Comparison With vs Without Table Expert Intervention
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Results and Impacts

I Beta Release Interface

« Client Engagement Enhancement - Delivers on-demand, minute-latency analytics to client teams - - How many active companics are in the dataset?
data that would otherwise arrive too late for high-stakes meetings.

« Consultant Productivity Gains - Shrinking data-pull turnaround from 2-3 business days to under

There are 20949 active companies in the dataset.

one minute per query, giving consultants insights exactly when they need them, enabling more follow-up | Y onfdence Score: Hoh @
questions and deeper competitive analysis. 1
. ' ™ .
« Engineering Agility - Saves 300 h/year on performance tuning and dataset onboarding for the I \_ShowPlanandquery ) U
Accenture engineers, freeing capacity for feature development. -
I — Suggested Next Questions
 Researcher Focus - Reclaims up to 500 h/year of data curation, a non-core task for researchers, , o —_
. - Lan you snow me the . .
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