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Problem Statement & Objective Data & Scope

Insurance against mishaps: A major risk of the credit insurance sector is posed by ‘ss oy 250K
climate change and natural hazards, causing great financial loss and threaten social welfare. - Policies
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Into the unknown: Despite of the ever-increasing importance of climate risks, the current

widely-adopted scorecard approach does not allow for the necessary adjustments. ll' ﬁ Counties
? ? ? Socioeconomics Data Exposure Data SZOB
Beating the odds: The objective is to develop an automated data-driven credit rating model Demographics and governments  Damage, resilience, vulnerability Assets

that incorporates climate hazard data, especially in areas prone to extreme natural hazards.
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Business Impact

Hazard Simulation Data-Driven Portfolio Steering

Our models provide a more accurate, natural hazard risk-adjusted

Major Hazards: Mean Extreme Loss

Basc.ed-on the simulation .results, various outlook of Assured Guaranty’s current portfolio exposure, serving as
statistics can be summarized. a guidance for the business to adjust their risk exposure on a
portfolio level.

For risk prediction purposes, we decided to

i focus on the mean extreme events (the heaviest Automated Risk Discovery
o2 ﬁ!ﬂ;‘ :i-.m.'f rain matters!)- for 7 major hazards identified The models suggest an alternative approach to the conventional
"v«:"‘\ﬁ ’ through the simulations. scorecard methods, leading to a more automated and more
E%Z;*"* “”'“‘-[f,ﬁ‘;‘ _ o accurate hazard-adjusted ratings, which better capture the risk that
b o -’-_‘%i Earthquake, Coastal Flooding, Riverine the company could face.
Flooding, Wildfire, Tornado, Hurricane, Drought
Machine Learning Pipeline

Rating Prediction This project builds a machine learning pipeline that enables further

expansions and implementations, demonstrating as a proof-of-
concept the potential of the methodologies.

Test Results

Classifcation Confusion Matrix Accuracy R2 MSE MAE
Percentage of Perfect Matches: 85.21 %

Percentage within +/- 1 notch: 90.01 % Regression 75% 0.72 8.32 1.19 ZOK $34M S 13 B
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*Regression model yielded slightly worse results

Scenario Analysis

Hazard Damage: Stationary vs Non-Stationary

Integration with other risk models

"») Our model can be integrated with other risk assessment
models to streamline the workflow
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ot = P B b il e “The hardest thing in the world is to simplify your life.
TEE B 4 I p It’s so easy to make it complex”
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Non-Stationary scenario had higher loss due to hazard and led to

80% more rating downgrades compared to stationary scenario 00 01 02 03 04 05
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* Numbers are for illustration purposes only



