

ASSURED **GUARANTY**

Disasters to Decisions Impact of Natural Hazards on Credit Risks

Kevin Sheng

Company Advisor: Dr. Christian Klose Faculty Advisor: Prof. Andy Sun

Problem Statement & Objective

Insurance against mishaps: A major risk of the credit insurance sector is posed by climate change and natural hazards, causing great financial loss and threaten social welfare.

Into the unknown: Despite of the ever-increasing importance of climate risks, the current widely-adopted scorecard approach does not allow for the necessary adjustments.

Beating the odds: The objective is to develop an automated data-driven credit rating model that incorporates climate hazard data, especially in areas prone to extreme natural hazards.

Data & Scope

Credit Data Financial obligor metrics

Socioeconomics Data Demographics and governments

Hazard Data Tracks, return periods, severities

Exposure Data

Damage, resilience, vulnerability

250K Policies

3080 Counties

\$20B

Assets

Methodology

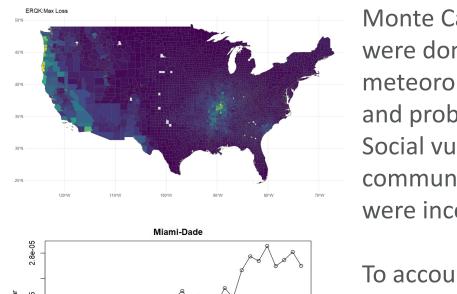
Rating Prediction Multiple sources of obligor financials and internal data sets were parsed, joined, and cleaned prior to missing data imputation using missForest. Ten additional Features were engineered to

improve model performance.

Since interpretability was required, Random Forest Regressor and Classifier were ultimately selected to create the bond-rating models without considering climate risks.

Credit Ratings without Climate Risks

Hazard Simulation



3080 counties, 18 hazards

Monte Carlo simulations were done based on meteorological models and probability models. Social vulnerability and community resilience were incorporated.

To account for climate change and transitional risks, we included further assumptions, such as urban-rural migration patterns, local resilience declines, and hazard 30 years, 1000 simulations frequency increases.

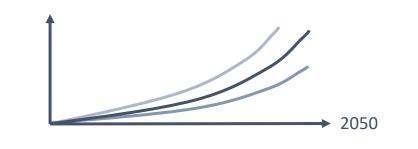
Risks due to Natural Hazards

Scenario Analysis

Simulation results impact a myriad features, such as full value per capita. With adjusted features, the rating prediction models then predict new ratings corrected for natural hazards.

BBB+

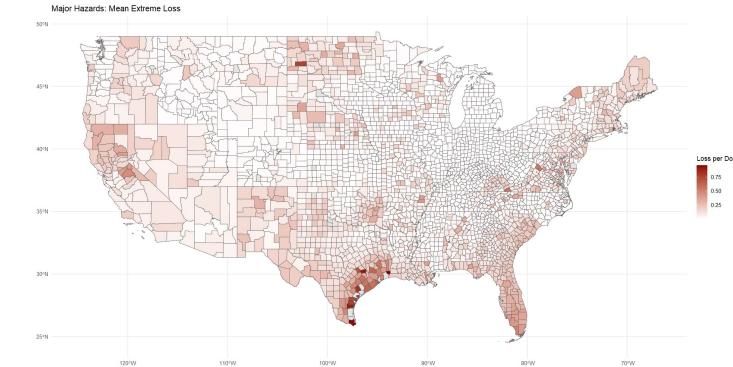
Under different simulation scenarios, the rating would adjust differently. Clustering analysis were conducted to understand the spatial distribution of risk accumulation.



Hazard-Adjusted Credit Ratings

Results

Hazard Simulation



Based on the simulation results, various statistics can be summarized.

For risk prediction purposes, we decided to focus on the mean extreme events (the heaviest rain matters!) for 7 major hazards identified through the simulations.

Earthquake, Coastal Flooding, Riverine Flooding, Wildfire, Tornado, Hurricane, Drought

MSE

8.32

Mean Recall

0.91

MAE

1.19

Mean Precision

0.91

Test Results

 R^2

0.72

Mean AUC

0.92

Rating Prediction

Perfect match: When the predicted mapped letter rating is the same as the actual letter

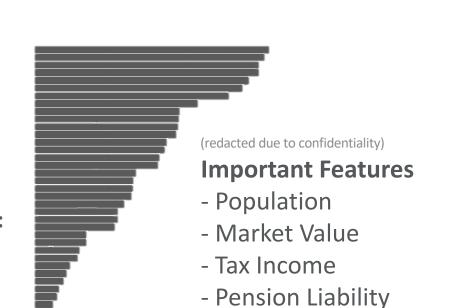
Accuracy

75%

Accuracy

85%

The +/- 1 notch error band: The one predicted rating letter above & below the actual letter rating



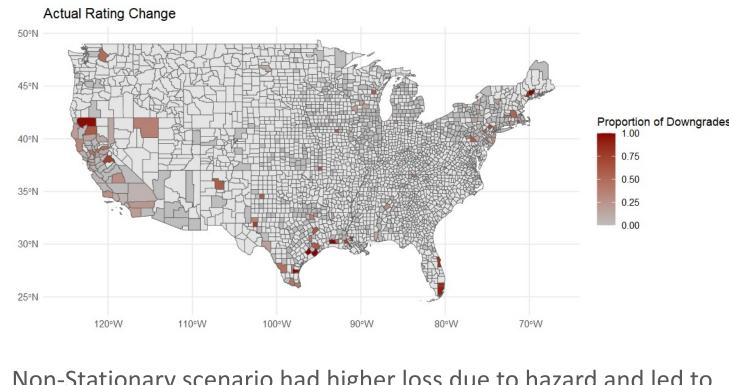
*Regression model yielded slightly worse results

Classifcation Confusion Matrix

Percentage of Perfect Matches: 85.21 %

Percentage within +/- 1 notch: 90.01 %

Scenario Analysis



Non-Stationary scenario had higher loss due to hazard and led to 80% more rating downgrades compared to stationary scenario

Hazard Damage: Stationary vs Non-Stationary Stationary
Non-Stationary Mean Extreme Loss

Business Impact

Data-Driven Portfolio Steering

Our models provide a more accurate, natural hazard risk-adjusted outlook of Assured Guaranty's current portfolio exposure, serving as a guidance for the business to adjust their risk exposure on a portfolio level.

Automated Risk Discovery

The models suggest an alternative approach to the conventional scorecard methods, leading to a more automated and more accurate hazard-adjusted ratings, which better capture the risk that the company could face.

Machine Learning Pipeline

This project builds a machine learning pipeline that enables further expansions and implementations, demonstrating as a proof-ofconcept the potential of the methodologies.

Rating Downgrades

\$34M

\$13B

Value at Risk

Reserves

Future Direction

Real-time credit risk dashboard

The model output can be visualized in a live dashboard for broader audiences

Refine hazard simulation models The model parameters can be better tuned to project different scenarios more accurately

Integration with other risk models

Our model can be integrated with other risk assessment models to streamline the workflow

"The hardest thing in the world is to simplify your life. It's so easy to make it complex"

----- Yvon Chouinard

"I'm as proud of many of the things we haven't done as the things we have done."

----- Steve Jobs

Actual HBBB +BBBB