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1. CONTEXT Background: Recent research suggests additivity can predict

. , - , o efficacy of combination therapies for advanced cancer.
Objective: Identify promising anti-cancer drug combinations.
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but this 1s seldom the case.

Problem Statement

Given time-survival observations of a trial, can we predict the survival for patients with different clinical backgrounds?
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Represent empirical survival curves  Methodical Feature Extraction: Preliminary Model: Multi-output Input: Parameters A, k for a pair of adjusted
as parametric survival functions to ~ Obtain value from unclean, 010l linear regression for benchmarking trial survival functions.

restrict size of input tensor. textual data. Pivotal step for the 0 I 0 I the metric and gaining intuition. . o

- Prediction: Forecast the drug combination
: : : success of modeling methods. . . ) ,

Experiment with Exponential and Neural Network: Experiments with survival with the Palmer Lab methodology.
Weibull survival distribution. Result: Cohort architecture and hyperparameters. .

Standardize survival values characteristics now include - Weighted Loss Function Output: Compute the error of the survival

b 0 and 1 and ’ tumor stage, trial phase, line , prediction against the observed ground-truth
ctween Uand | and normalize of therapy, trial modality, - Learning Rate Decay survival of the combination therapies.

using Min and Max of training set. cancer spread, etc. _ Batching by Drug Type

3. RESULTS AND IMPACT |

Impact

Baseline: Compute the error between
Model Average KL Average MAE Average

Divergence (Additivity) ~ RMSE combination predictions on non-adjusted curves - Pioneered first AstraZeneca model to estimate
(Additivity) (Additivity) (without taking into account prognostic , ] o ,
—— s e e background) and the observed combinations. combination efficacy of any two clinical trial arms.
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function improves on the baseline by 13.2 %. o
Weibull 5.0 0.083 15.93 18.39 Modeling survival with an Exponential function - Model has potential applications in patient
- falls short of the baseline, because an selection and supporting physician prognoses
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hazard rate.
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