Boosting Quality Control in the Automotive Industry using LLMs and Contrastive Learning

MIT Students: Dongming Shen & Tingying Yan

MIT Faculty Advisor: Prof. Retsef Levi BMW Advisor: Dr. Maka Karalashvili

Problem Statement

The Problem Management Process:

Defects Lessons Incidents Problems Cause Measure Detected Learned Reporting Line Alignment (RLA)

Matching an incident to a problem (RLA) is a crucial part of managing product problems at BMW to ensure vehicle quality and reduce customer complaints.

Objective

Improve RLA and make AI recommendations resemble technician's choices

Manual identification of problems based on individual experience and knowledge

- Enhance accuracy and efficiency
- Database with **fewer duplicates** and improved categorization

Datasets

- Incident: 80K rows X 171 features from Jan. 2021 to Mar. 2024 An "incident" is a defect that has just surpassed a basic evaluation. Their texts contain basic information of defects and do not go deeper into further analysis.
- Problem: 38K rows × 307 features from Jan. 2021 to Mar. 2024 A "problem" is a defect that is more mature. Their texts can be summaries of several similar incidents with more detailed information than the incidents.

Challenges

Multilingual free text data with abbreviations & duplications

Balanced model selection

Recommendations

#2

#3

Problem A

Problem B

Problem C

Problem X

Problem Hit Rank =

Incident 1

Incident 2

Incident 3

Incident 4

Incident 5

Incident 6

Problem A

Problem B

Problem A

Matching

Problem C

Need **systematic** evaluation method

Domain knowledge incorporation

Methodology

Evaluation Methods:

Correct Labels: previous incident-problem matchings in the database

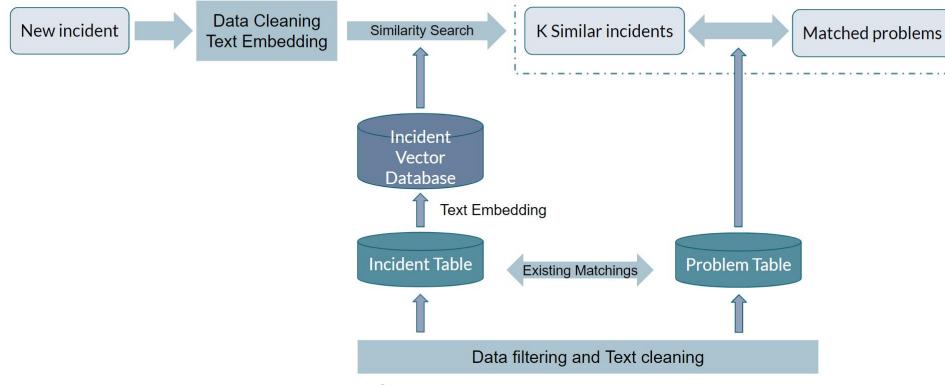
Test Incident

is a "sibling" of

Recommendations

- Hit Rate: the percentage of within a sample of 1,000 incidents with existing (for evaluation) Current Matching (for evaluation) matchings.
- Problem Hit Rank: see the example on the right

Retrieval Pipeline:

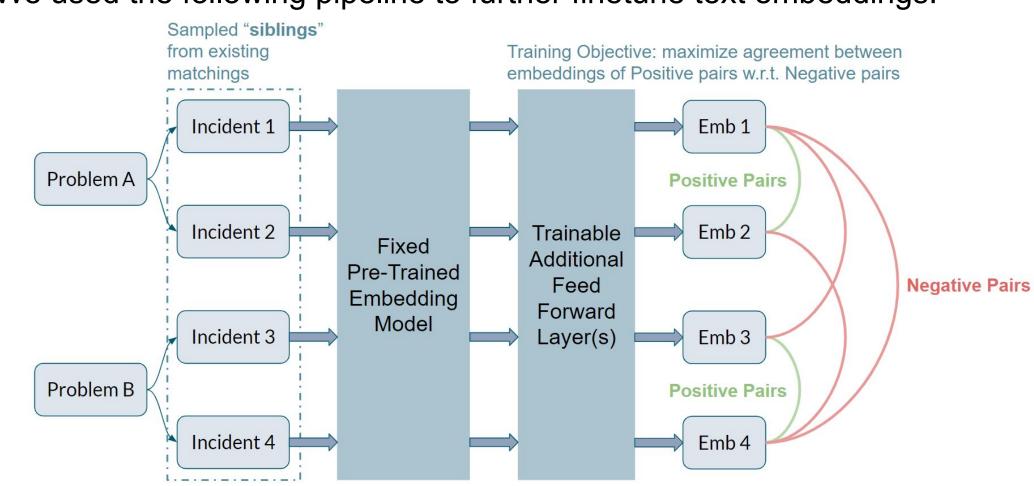


Phase I: Embedding Model Selection

We tested text embedding of mBERT, RoBERTa, E5-large, and OpenAl ada with cosine distance to retrieve recommendations. We aim for a model that generates satisfactory results while acceptable in resources required.

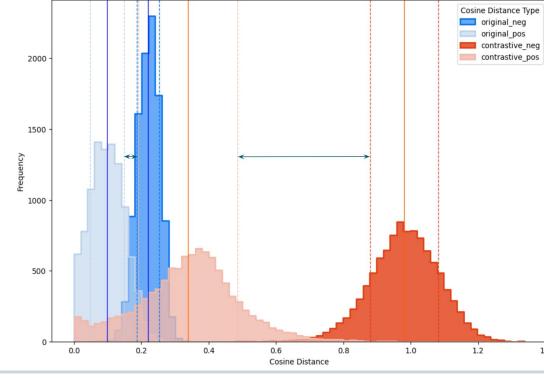
Phase II: Fine-tuning with Contrastive Learning:

We used the following pipeline to further finetune text embeddings:



Cosine Distance Comparison

KL Divergence Improvement:



Contrastive learning pushes negative cosine distance distribution away, thereby generating better hit rates!

11.95

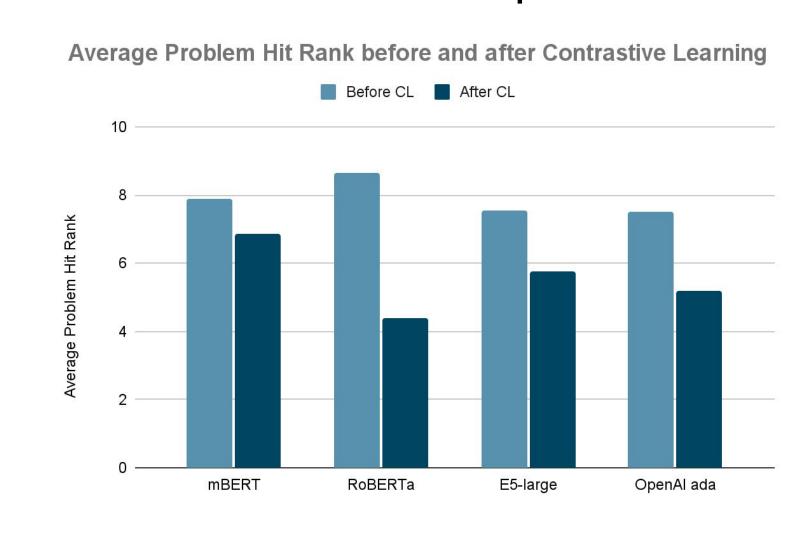
20.39

Results

Model Hit Rate Comparison



Model Hit Rank Comparison



At K=10, our best model improved the hit rate by **44.5** percentage points compared to baseline, ensuring the model accuracy.

After contrastive learning, users will read **3** documents fewer on average, effectively improving the **efficiency**.

Business Impact

Technicians read less documents to find the correct matching, thereby improving the working efficiency

Avoid problem duplication and improve database quality

Boost the RLA within PMP process to ensure **product quality** and improve customer satisfaction

Future Work

- Re-ranking when K is large to get more accurate ranking
- Develop **Q&A** chatbot features using Retrieval and Generation pipeline
- Incorporate root causes and measures information to further improve the matchings