From Cluster To Counter

A Segmented Approach To Planogram Design

CCSWB – ESTEFANÍA ELIZONDO; XIMENA ZUNIGA, JESSICA JOHNSON MIT ADVISOR – Prof. STEPHEN GRAVES

Andrea Valacchi

Tommaso Serafin

Problem Statement

Small Regional Key Accounts

Coca Cola SOUTHWEST BEVERAGES

Undifferentiated Standard Planogram

Unviable to be store-specific

Art & Science

Optimal Planogram

- Tailored to common store specificities
- Streamlined creation process
- Economically viable level of granularity
- Compatibility with current planograms

Data

Historic Sales data

Projected Census Data

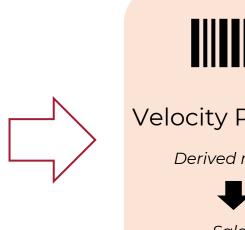
Product Attributes

Income

Customers

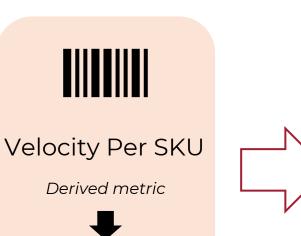
Education

Profitability


Age

Pilot set of **157** Regional Key Accounts

Methodology


Order Of Entry Per Store



Profitability

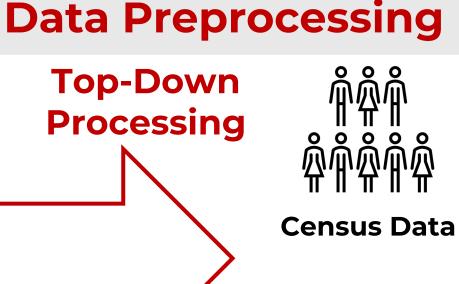
(\$/Unit)

"Prioritized sequence in which **products** should be allocated shelf space within a planogram"

Profit per week

\$/Week

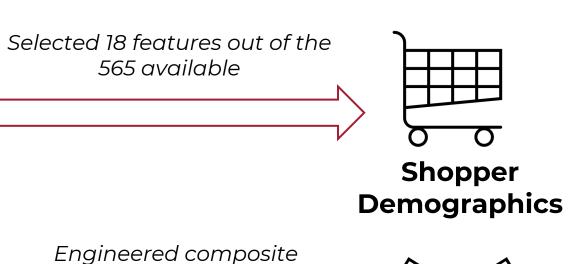
Planograms are now designed with **profitability** in mind, not only velocity


Fixed time frame

X! Velocity!=

(Units/Week)

Currently used in creating Planograms

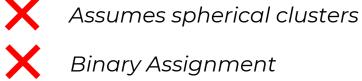


VS

Clusters were interpreted by fitting decision trees

on the features to recover cluster assignments

Model Selection


K-Means Clustering

Bottom-Up

Processing

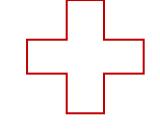
Gaussian **Mixture Models**

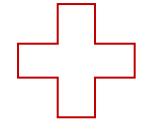
features to capture trends

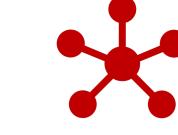
Flexible cluster shape Probabilistic Assignment

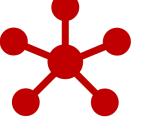
Computationally Intensive

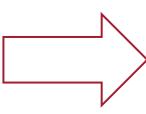
Produces clusters better aligned with business knowledge

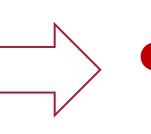

Relationship with

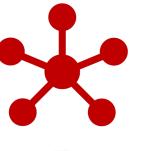

CCSWB

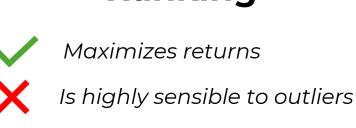

Order Of Entry Per Segment **OOE** per Store **Cluster Assignment OOE per Segment**




New Metric:



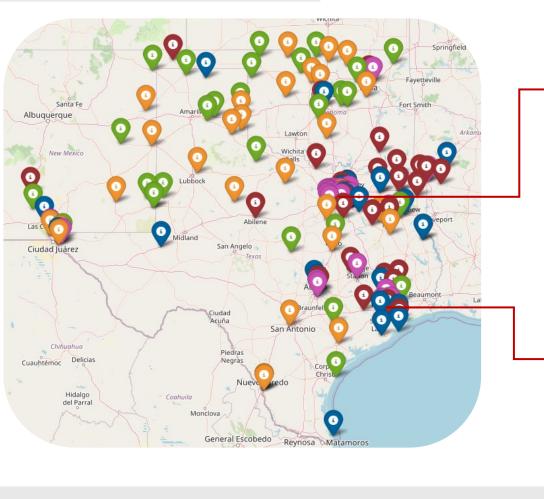




Wisdom Of The Crowds

Tradeoff: Optimal vs Robust

Profit-Based Ranking



Ranked **Majority Voting**

- Robust to Outliers
- Profit is not maximized

No clear winner, so both methods are retained in the final pipeline

Segmentation

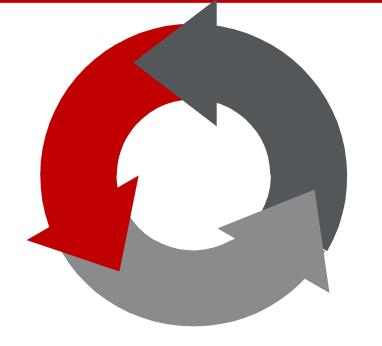
Focus On: Houston Area

Impact

Direct Impact

+ \$1.4 Million

+ 15%


In Gross Profit Across the 157 Stores

Modular Pipeline

Indirect Impact

Modular design to ensure integration with current and future systems

✓ New Inputs can be provided without hindering scalability

, Project Spillover

- ✓ Sociodemographic features now available at the census Tract level
- ✓ Developed best practices for Geospatial data manipulation

Knowledge Transfer Sessions ✓ Avoid the loss of acquired informal knowledge **Standard Planogram**