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Abstract

Does automatic enrollment in retirement savings plans increase lifetime wealth accumulation and

welfare? I document that employees offset the short-run positive effect of automatic enrollment by

saving less in the future. Consequently, a lifecycle model estimated on data from 34 U.S. 401(k)

plans predicts that the long-term effect of auto-enrollment on wealth is negligible except at the bottom

of the lifetime earnings distribution. The model’s long-run predictions are supported by its out-of-

sample performance in predicting behavior in 86 other 401(k) plans and nationally representative

U.K. data. The observed inertia at the savings default is explained by an opt-out cost of around $250.

My estimate is smaller than the thousands of dollars estimated in previous studies because, in my fully

dynamic model, non-autoenrolled workers can compensate for not contributing now by contributing

more later. Automatic enrollment improves social welfare if the policymaker is more patient than

individuals or puts more weight on low-income individuals’ utility.
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1 Introduction

Automatic enrollment has transformed the way millions of people around the world save for retirement.

Starting with Madrian and Shea (2001), several studies have found that moving from an opt-in regime

(where new hires must actively elect to participate) to an automatic enrollment regime (where new hires

are enrolled by default with the option to opt out) can double participation in a retirement savings plan.2

Motivated by this evidence, auto-enrollment has become perhaps the most common policy application

of behavioral economics, and is already the norm in retirement savings plans in the U.S., U.K., New

Zealand, and Turkey.

Does auto-enrollment increase lifetime wealth accumulation and welfare? Despite its widespread adop-

tion, the answer to this question remains unknown. Auto-enrollment policies are too recent to directly

observe the effect that enrolling a 25-year-old has on her retirement wealth 40 years later. In this pa-

per, I show that considering automatic enrollment in a fully dynamic setting is crucial for understanding

its long-term savings and welfare impact. I document that employees offset the short-run positive effect

of automatic enrollment by saving less in the future. Consequently, a lifecycle model predicts that the

long-term effect of auto-enrollment on wealth is negligible except at the bottom of the lifetime earnings

distribution. The estimated model fits the data well (both in and out of sample), and explains the observed

inertia at the savings default with an opt-out cost of only around $250 and otherwise standard preferences.

I begin by documenting three stylized facts about auto-enrollment which provide motivation for the

model. First, I show using representative data from the U.K. that automatically enrolling workers in

their current job’s retirement savings plan caused their participation rate and contribution rate in their

next employer’s opt-in retirement savings plan to fall by 13 percentage points and 0.35% of income,

respectively. This suggests that the lifetime savings increases created by auto-enrollment, which to date

have been estimated without following workers across job transitions, have been overstated.

Second, using a new proprietary dataset of 401(k) administrative records from 86 U.S. firms, I doc-

ument that changing a positive default contribution rate to an even higher default lowers the 401(k)

participation rate. A model with a cost of opting out of the savings default fits this new evidence, while

alternative theories, such as loss aversion and psychological anchoring, make the opposite prediction. A

cost of opting out of the default can reflect both real transaction costs and a broad class of behavioral

explanations of the default effect, such as the cognitive cost of paying attention or finding the optimal
2Large auto-enrollment effects on participation and contributions have been documented in the U.S. (Choi et al., 2004 and

2006; Beshears et al., 2009; Clark et al., 2015), in the U.K. (Cribb and Emmerson, 2016), and in an experimental setting in
Afghanistan (Blumenstock et al., 2018).
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choice.

Third, I show that the median cumulative contributions of non-autoenrolled workers catch up to the

median cumulative contributions of autoenrolled workers over three years. Because non-autoenrolled

workers can compensate for their low savings early on by saving more later, they are not fully forgoing

the tax and matching benefits of retirement savings when they do not save early in their tenure. Hence, a

modest opt-out cost can explain the observed level of inertia around the savings default.

These stylized facts motivate a lifecycle model with opt-out costs. I develop a structural model in

which individuals save in both a realistic retirement account and a liquid asset, borrow through unsecured

credit, and face labor market risk and a progressive tax and benefit system. I exploit quasi-experimental

variation in the default contribution rate at 34 U.S. 401(k) plans to identify the model’s parameters.

Specifically, I compare the contribution decisions of employees hired in the year before and the year after

the introduction of auto-enrollment for new hires.

I estimate an opt-out cost of around $250 every time an employee changes her contribution rate.

Previous work, which has not studied auto-enrollment in a fully dynamic model, infers opt-out costs on

the order of thousands of dollars to rationalize the fact that, under an opt-in regime, many individuals

choose to forego the tax and matching benefits of retirement saving (DellaVigna 2009 and 2018; Bernheim

et al., 2015).3 The required opt-out cost is smaller in my fully dynamic setting because workers can

compensate for low initial savings rates by contributing more later. This implies that the long-term

effect of auto-enrollment on wealth is negligible for a majority of people. However, because the opt-

out cost represents a larger share of earnings for low-income individuals, a typical default savings rate of

3% of income adopted by all employers raises retirement wealth at the bottom of the lifetime earnings

distribution.4 In line with the empirical evidence in Chetty et al. (2014) and Beshears et al. (2018), most of

the retirement savings increases created by auto-enrollment translate into higher total savings with limited

crowd-out of liquid assets.

I find support for these long-term predictions in the model’s out-of-sample performance in two dif-

ferent settings. This is the main advantage of structural modeling relative to reduced form estimation:

the model can extrapolate effects to the long run and to different policies, populations, and institutional

environments. First, my model predicts well the response of workers in the 86 other U.S. 401(k) plans

where the default was increased from a positive contribution rate to an even higher rate. Second, the
3DellaVigna(2009, 2018), based on a back-of-the-envelope calculation of annual matching benefits, estimates the minimum

opt-out cost to be above $1,000 with time-consistent preferences. Bernheim et al. (2015) estimate an average opt-out cost of
around $2,000 (and above $3,000 for the 60% of workers with positive opt-out costs).

4In the model the opt-out cost is fixed and identical across individuals. An alternative specification where the opt-out cost is
proportional to income does not fit the data.
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model—with preference parameters estimated in the U.S.—replicates the effect of the U.K. national auto-

enrollment policy rollout. The U.S. and U.K. environments vary along multiple dimensions, and the

model is calibrated to capture the differences in their retirement savings plans’ features, income processes,

and tax and benefit systems. The stability of auto-enrollment effects across completely different settings

builds confidence in the model’s long-term predictions.

Finally, I characterize autoenrollment’s lifetime welfare impact under alternative assumptions about

social preferences. If the policymaker shares the same time preferences as individuals and has no re-

distributive motive beyond declining marginal utility of consumption, an opt-in regime is preferred to

auto-enrollment because tax and matching incentives for retirement saving cause individuals to consume

too much in retirement. On the other hand, if the policymaker is paternalistic (i.e. more patient than in-

dividuals) or inequality averse (i.e. puts more weight on the welfare of low-income individuals), a default

contribution rate near the employer matching threshold maximizes social welfare. My optimal policy

characterization is robust to alternative assumptions about the policy incidence; the results hold whether

employers reduce their profits, wages, or the match rate to balance their budget in response to the policy.

This paper makes a number of contributions relative to previous literature. While several studies have

documented the short-run effects of auto-enrollment on savings (Madrian and Shea, 2001; Choi et al.

2004 and 2006; Beshears et al., 2009; Clark et al., 2015), there are no studies of this policy’s long-term

effect. This gap in the literature is troubling given that the policy’s primary goal is to improve retirement

security. My paper is the first to evaluate the effect of auto-enrollment over a lifetime, and the first to

study this policy in a fully dynamic and quantitative model.

Another contribution of the paper is to provide a comparison between different behavioral theo-

ries that can potentially explain inertia at the savings default. I consider the role of opt-out costs, loss

aversion, psychological anchoring, and—in a separate extension—present-biased preferences. My findings

complement and broadly align with the results from a recent randomized control trial by Blumenstock

et al. (2018), which found evidence in support of cognitive costs and present bias but did not directly test

theories of loss aversion and psychological anchoring.

Only a handful of papers have analyzed the welfare impact of auto-enrollment. Carroll et al. (2009)

characterizes the optimal enrollment policy in a model with present-biased preferences, and compares

auto-enrollment to a policy forcing an active choice. Bernheim et al. (2015) provides bounds on the

welfare effect of different 401(k) default options under several alternative models. Goldin and Reck (2018)

focuses on the normative ambiguity introduced by the fact the opt-out cost may or may not be relevant

for welfare. My paper adds to this literature in two ways: I explore the lifetime welfare impact of auto-
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enrollment, and I consider the policy incidence under alternative means of balancing employers’ budget.

The rest of the paper proceeds as follows. In Section 2, I document three stylized facts about auto-

enrollment which provide motivation for the model introduced in Section 3. I estimate the model’s

parameters in Section 4, and explore the sensitivity of my opt-out cost estimate to alternative specifications

of the model in Section 5. Section 6 presents results from using the model to predict the long-term effect

of auto-enrollment. Section 7 documents the out-of-sample performance of the model. Section 8 analyzes

welfare and characterizes optimal policies. Section 9 concludes.

2 Three Stylized Facts about Auto-enrollment

In this section, I document three stylized facts about automatic enrollment which provide motivation for

the model. The first fact is that autoenrollment reduces savings in subsequent jobs, which suggests that

previous estimates have overstated the effect of auto-enrollment on lifetime savings and motivates the need

for a model. The second fact is that increasing the default contribution rate reduces participation. This

provides support for a model with a cost of opting out from the saving default, and rules out alternative

explanations of the default effect. The third fact is that the median cumulative contributions of non-

autoenrolled workers catch up to the median cumulative contributions of the autoenrolled workers over

three years. Because non-autoenrolled workers are not fully forgoing the benefits of retirement saving by

not saving early in their tenure, a relatively model opt-out cost can explain the observed inertia at the

default.

2.1 Data and identification

2.1.1 U.S. 401(k) administrative data

My main identification strategy consists of comparing employees at the same firm hired before and after

changes in the default contribution rate.5 Both groups of workers face the same financial incentives to

contribute to the plan, but those hired before the change have a different default option than those hired

after.

I compare these two groups of workers using a new proprietary dataset made available by a large U.S.

financial institution. It contains 401(k) administrative records from nearly 600 firms with individual-

level panel data for more than 4 million workers between December 2006 and December 2017. For
5A similar identification strategy has been used before by Madrian and Shea (2001) and Choi et al. (2004) using data from

four 401(k) plans.
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each employee, demographic characteristics, participation status in the 401(k) plan, and employee and

employer contribution rates (as a share of salary) are recorded annually in December. Contribution

dollar amount, 401(k) balances, and asset allocation are recorded at the end of every month. To date,

the literature on auto-enrollment in 401(k) plans has relied on either (i) cross-sectional evidence from a

large sample of 401(k) plans (Clark et al., 2015), or (ii) within-firm evidence from a small number of

firms (Madrian and Shea, 2001; Choi et al. 2004 and 2006; Beshears et al., 2009). My new dataset allows

me to combine the strengths of these two approaches by exploiting within-firm variation in the default

contribution rate at a large number of 401(k) plans.

2.1.2 U.K. national auto-enrollment policy and representative data

The U.K. Pension Act of 2008 requires employers to automatically enroll their employees (with the option

to opt out) into a workplace pension scheme. The law sets the minimum employee default contribution

rate at 1% of salary and the minimum employer contribution at 1%. The policy was rolled out in

phases by employer size between 2012 and 2017, and, unlike the U.S. setting, both new hires and non-

participating seasoned employees were automatically enrolled (see Appendix E for details on the policy

rollout). I exploit the timing of the phased rollout as a source of quasi-experimental variation.

To study this policy, I use individual-level panel data from the U.K. Annual Survey of Hours and

Earnings (ASHE) between 2006 to 2016. ASHE is a 1% panel of all U.K. workers, sampled based on the

last digits of their National Insurance number (similar to the U.S. Social Security number). Demographic

characteristics, labor earnings, and retirement contributions are collected from administrative tax records

and from an annual survey of employers. The data is collected every year in April. There are two ad-

vantages to using ASHE. First, it is a nationally representative sample with around 200,000 private sector

employees per year. Second, it follows the same individuals over time as they change jobs. However, un-

like the U.S. 401(k) administrative data, it does not contain data on workers’ retirement account balances

and on the detailed features of each firms’ retirement savings plans.

2.2 Fact I: Current auto-enrollment reduces saving in the subsequent job

I exploit the phased roll-out of the U.K. national auto-enrollment policy to study the participation and

contributions of employees moving from a firm subject to the auto-enrollment requirement (larger firms)

to a firm not yet affected by the policy (smaller firms). I compare their saving decisions in their first year

of tenure to the saving decisions of workers who moved to the same firm in the same year, but coming

from an employer not yet affected by the policy (from a smaller to another smaller firm).
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I use data from 11 successive waves of ASHE between April 2006 to April 2016. The policy rollout

started in 2012 with only the largest employers affected, and in every ASHE wave between 2012 and

2016 I observe more firms subject to the auto-enrollment requirement (details of the rollout are given

in Appendix E). By the last ASHE wave in April 2016, all employers with more than 30 employees

were subject to the auto-enrollment mandate. I include data prior to the beginning of the policy rollout

to control for time-invariant differences between workers moving between firms of different sizes. The

sample contains 107,795 job-switchers in their first year of tenure at their new job.

I estimate the following specification for a worker i who transitioned in year t from employer en−1 to

employer en:

yi,t = β0AEtoNoAEi,t +

7∑
j=1

βj Size
en−1

j +
7∑
j=1

7∑
g=1

γj,g Size
en−1

j × Sizeeng + ϕZi,t + αen,t + εi,t

I consider two outcome variables yi,t, employees’ participation status in the retirement savings plan

and their contribution rate as a share of salary. The variable AEtoNoAEi,t is a dummy equal to 1 for

worker i in year t if both: (i) her current employer en is not subject to the auto-enrollment requirement

in year t, and (ii) her previous employer en−1 was subject to the auto-enrollment requirement the last

time employee i was observed at firm en−1. In the presence of firm-year fixed effects αen,t, the coefficient

β0 captures the difference in participation and contribution rates among new hires in the same opt-in firm

who were or were not subject to the auto-enrollment requirement in their previous job. Since the policy

was rolled out by the size of employers, one concern could be that new hires coming to firm en from larger

previous employers are systematically different from those joining from smaller ones. I use data before

and after the policy rollout to identify the auto-enrollment effect separately from the effect of moving

from a larger to smaller employer. I control for a set of interaction dummies Sizeen−1 × Sizeen for each

pair of current and previous employer size categories (i.e. with 7 firm size categories I have 49 pairs of

current and previous employer sizes).6 I use data prior to the beginning of the auto-enrollment rollout to

identify these interaction dummies separately form the effect of moving from a non-autoenrollment to an

auto-enrollment employer. Finally, Zi,t is a set of individual controls (38 age dummies, gender, log salary

and log tenure in the current job en, and log salary and log tenure when last observed in the previous job

en−1).

My baseline estimate for β0 is reported in the first column of Table 1. Workers who were previously
6These seven employer size categories are firms with more than 30, 000 workers, between 6, 000 and 29, 999 workers, 350

to 5, 999 workers, 160 to 349 workers, 58 to 159 workers, 50 to 57 workers, and 30 to 49 workers. Firms with fewer than 30
employees is the omitted category.
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auto-enrolled participate 12 percentage points less, and contribute 0.35 percentage points of salary less

to the retirement savings plan of their next (non-autoenrollment) employer. To test that these estimates

capture the effect of the policy rollout and not differences across employers, I conduct a number of

placebo exercises. I run the same specification under the assumption that the policy rollout started before

the actual policy implementation date in 2012. These placebo tests, reported in columns 2 to 8 of Table

1, are all insignificant at the 5% level for both participation and contribution outcomes, and a single one

is significant at the 10% level (column 6). These results give credibility to my identification strategy, and

suggest that my estimate captures the effect of the auto-enrollment rollout rather than the effect of moving

from a larger to smaller employer.

Table 1: Auto-enrollment effect after a job transition to a non-autoenrollment employer

Actual policy Placebo tests
(1) (2) (3) (4) (5) (6) (7) (8)

Beginning of policy rollout 2012 2005 2006 2007 2008 2009 2010 2011

Panel A - Participation rate

AE to non-AE employer -0.126** 0.064 0.002 -0.011 -0.000 0.026 -0.023 0.028
(0.061) (0.052) (0.053) (0.046) (0.045) (0.044) (0.040) (0.051)

Panel B - Contribution rate (in percentage of pay)

AE to non-AE employer -0.348** 0.301 -0.081 -0.162 -0.071 0.042 -0.390* -0.183
(0.149) (0.266) (0.251) (0.258) (0.244) (0.245) (0.206) (0.173)

Employee characteristics X X X X X X X X
Sizee′×Sizee X X X X X X X X
Employer×Year FE X X X X X X X X
Observations 107,795 107,795 107,795 107,795 107,795 107,795 107,795 107,795

* p<0.10, ** p<0.05, *** p<0.01

Notes: Each cell reports coefficients from a regression whose dependent variable is a dummy for workers’ participa-
tion status in the retirement savings plan (Panel A), or contribution rate in percentage points of pensionable pay
(Panel B). The sample contains job switchers in their first year of tenure. The coefficients correspond to the effect
of the automatic enrollment mandate in the previous employer on contributions when the current employer is not
subject to the auto-enrollment requirement. In Column 1, I assign an enrollment regime to each employer (i.e. opt
AE or non-AE) based on the U.K. national auto-enrollment policy rollout schedule (in Appendix E). In Columns
2 to 8 I assign enrollment regimes based on a (placebo) policy rollout schedule that starts earlier than the actual
policy. I assume that the policy rollout started in the year reported in the column heading. Controls for employees’
characteristics include log salary and log tenure in the current job, log salary and log tenure when last observed
in the previous job, a dummy for gender, and 38 age dummies. The sample is restricted to private sector workers
between the ages of 22 and 60. Standard errors clustered by current employer are in parentheses. Data source: U.K.
Annual Survey of Hours and Earnings waves 2006 to 2016.
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My findings go against the hypothesis that auto-enrollment creates lasting saving habits, in which case

auto-enrollment should have caused workers to contribute more in their next job’s retirement savings

plan. While there are several possible explanations for why previous auto-enrollment reduced contribu-

tion in the next job’s retirement savings plan,7 I show in Section 7.2 that the magnitude of this effect is

predicted by a standard wealth effect. Autoenrolled individuals accumulate more retirement wealth early

on and therefore have fewer incentives to contribute to their next job’s retirement savings plan.

2.3 Fact II: Increasing the default contribution rate reduces participation

2.3.1 Empirical evidence

I use a sample of 159,216 workers in their first year of tenure in 86 U.S. firms, all of whom were au-

toenrolled, but with some facing a higher default contribution rate than others.8 I compare those hired

before and to those hired after each of these 86 employers increased the default contribution rate from

one positive number to a higher one (for instance from 3% to 6% of salary). I estimate the effect of a

higher default contribution rate in a linear probability regression with firm fixed effect, year fixed effect,

and dummies for each age between 18 and 65. Results are reported in Table 2. The outcome variable

in columns 1 and 2 is a dummy equal to 1 if the worker contributes a positive amount to the plan. For

each percentage point increase in the auto-enrollment default contribution rate, participation drops by

nearly 1 percentage point (columns 1 and 2). In addition, increasing the default contribution rate not

only reduces participation, but also increases contributions at the lowest rates. The outcome variable in

columns 3 and 4 is a dummy variable for participating in the plan at a contribution rate strictly below the

initial default contribution rate. I find that for each percentage point increase in the default contribution

rate, there is a 1 percentage point increase in positive contributions below the initial default (columns 3

and 4). For instance, when the default increases from 3% to 6% of salary, workers are 3.2 percentage

points more likely to contribute either 1% or 2% of their salary to the plan. Finally, columns 5 and 6

measure the combined effect of a higher savings default on both participation and lower contributions.

Every percentage point increase in the default contribution rate increases the likelihood of contributions

below the initial default (including zeroes) by 2 percentage points. In what follows, I show that this new

empirical fact can be used to distinguish between alternative explanations of the default effect.
7For instance previously autoenrolled workers may become more passive and expect their future employer to also enroll

them automatically in a retirement savings plan.
8I restrict the sample to the first year of tenure to avoid confounding the direct effect of facing a higher default with the

indirect wealth effect. Workers enrolled at different default rates accumulate different amount of retirement wealth, and over
time, have different incentives to save save.
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Table 2: The effect of a higher auto-enrollment default on participation and contributions

Participation Positive contribution Contribution below
(i.e. contribution > 0) below initial default initial default (inc. 0)
.....(1)..... .....(2)..... .....(3)..... .....(4)..... .....(5)..... .....(6).....

Percentage point increase in the default -0.008*** 0.011*** 0.019***
(0.001) (0.002) (0.003)

Increase in the default = 1% -0.009 0.008*** 0.016*
(0.008) (0.002) (0.009)

Increase in the default = 2% -0.017*** 0.026*** 0.043***
(0.004) (0.004) (0.006)

Increase in the default = 3% -0.025*** 0.032*** 0.057***
(0.007) (0.010) (0.016)

Increase in the default = 4% -0.036*** 0.028*** 0.064***
(0.006) (0.002) (0.007)

Employee characteristics X X X X X X
Year FE and Firm FE X X X X X X
Observations 159,216 159,216 159,216 159,216 159,216 159,216
R-squared 0.022 0.022 0.020 0.020 0.020 0.020

* p<0.10, ** p<0.05, *** p<0.01

Notes: Each column reports coefficients from a linear probability regression where the dependent variable is a
dummy for the outcome in the column heading. The coefficients correspond to the difference between employees
hired before and after each firm increased its auto-enrollment default contribution rate. Each data point corresponds
to an employee observed in her first 12 months of tenure, and after the end of the auto-enrollment grace period.
Controls for employee characteristics include log of tenure, and dummies for each age between 18 and 65. Standard
errors clustered at the firm level are in parentheses. Data source: administrative 401(k) records from 86 U.S. firms.

2.3.2 A theoretical framework for comparing alternative theories

I begin with a simple theoretical framework to compare the predictions of different behavioral theories

that can potentially explain inertia at the savings default. This is a simplified version of the full model

developed in Section 3.

A worker contributes a fraction s of her wage w to a retirement savings account. She faces a default

contribution rate d, and selects an optimal contribution choice s∗ from a discrete set S such that:

s∗ = argmax {U (s, d) + δVt+1 (s)}s∈S

where δ is the intertemporal discount factor, U is flow utility, and Vt+1 is the continuation value, which

is strictly increasing in contributions to the retirement savings account. I use this framework to com-

pare the predictions of three possible explanations of the default effect: opt-out costs, loss aversion and

psychological anchoring.
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2.3.3 A model of opt-out costs fits the empirical evidence

A first explanation for the default effect is that employees have to incur real or behavioral costs to depart

from the savings default. As discussed later in Section 3, these opt-out costs can capture a broad class

of neoclassical and behavioral explanations of the default effect such as the cost of completing a form or

seeking out advice from a professional adviser, as well as the cognitive cost of paying attention or finding

the optimal saving choice.

I assume that workers incur a cost k to choose a contribution rate other than the default:

U (s, d) =


u ((1− s)w − k) if s 6= d

u ((1− s)w) if s = d

where the utility function u is increasing and strictly concave in take home pay (1− s)w.

Proposition 1 shows that, in line with the empirical evidence, increasing the default contribution rate

in a model with a fixed opt-out cost causes more people to drop out completely from the retirement

savings plan or to contribute at the lowest rates.9

Proposition 1. If Vt+1 is concave, increasing the default contribution rate from d to d weakly increases con-

tributions strictly below d in a model with a fixed opt-out cost.

To build intuition for Proposition 1, consider an employee whose preferred contribution rate is 1% of

salary. When the default contribution rate is 3%, this employee may stay at the default to avoid incurring

the opt-out cost because the default option is close enough to her preferred contribution rate. However,

if the contribution rate is raised to 6%, the same employee may choose to incur the cost and switch to 1%

because the higher default is further away from her preferred contribution rate. Therefore, this employee

reduces her contribution rate from 3% to 1% when the default is increased from 3% to 6%. A formal

proof is provided in Appendix H.10 Later, in Section 6, I show that the opt-out cost model not only makes

the right qualitative prediction, but it also predicts the magnitude of employees’ response to increasing

the default.
9This pattern of behavior, named the “drop-out” effect” by Caplin and Martin (2017), has been documented in other settings.

For instance in the case of charitable giving (Altmann et al., 2018) and tips for taxi rides (Haggag and Paci, 2014), increasing the
default led more people to not contribute at all.

10The proof relies on the assumption that Vt+1 is concave in the retirement contribution rate. This assumption may not
always hold because of the discrete nature of the contribution choice decision. In practice, if there is enough uncertainty about
the future, the continuation value Vt+1 is generally concave.
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2.3.4 Loss aversion makes the opposite prediction

Loss aversion is a common explanation for individuals’ propensity to stay at the status quo (Samuelson

and Zeckhauser, 1988). Employees may perceive the default as a reference point around which gains and

losses are evaluated. For instance, they may perceive an actively chosen additional contribution to the

retirement savings plan as a loss in take-home pay, whereas resources that are automatically contributed

to the savings account may not feel like losses. To capture this idea, I adopt a functional form similar to

DellaVigna et al. (2017) and define flow utility as:

U (s, d) =


u ((1− s)w) + η (v (s)− v (d)) if s < d

u ((1− s)w) + ηλ (v (s)− v (d)) if s ≥ d

where v (.) is decreasing in the contribution rate and reflects gain-loss utility.11 An employee who

contributes below the default contribution rate has more resources than her reference level and experi-

ences gain utility v (s) − v (d) > 0 with weight η ≥ 0. An employee who contributes above the default

has fewer resources than her reference level and experiences loss utility v (s) − v (d) < 0 with a weight

ηλ. The parameter λ ≥ 1 captures loss aversion.

Proposition 2 shows that, under loss-averse preferences, increasing the default contribution rate re-

duces the fraction of employees contributing at the lowest rates.

Proposition 2. Under loss-averse preferences, increasing the default contribution rate from d to d weakly

decreases contributions strictly below d:

Pr (s∗ < d | d = d) ≤ Pr
(
s∗ < d | d = d

)
To build intuition for Proposition 2, consider a plan that increased its default contribution rate from

3% to 6% of salary. Contributions at 4%, 5%, or 6% of salary no longer feel like losses. Thus, these

contributions become relatively more desirable compared to contributions at 0, 1%, and 2% of income

(which are in the gain domain under both default contribution rates). A formal proof is provided in

appendix H.
11A natural candidate functional form is v = u ((1− s)w), where take-home pay serves as a consumption reference point.

This specification satisfies the condition that v is decreasing in s.
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2.3.5 Psychological anchoring makes the opposite prediction

People may perceive the default contribution rate as a psychological anchor. Following Bernheim et al.

(2015), I assume that the anchoring parameter χ shifts workers preferences toward the value that would

rationalize the default as an optimal choice. I assume that workers act as if they were respectively more

(less) patient when contributing below (above) the default. The value of contributing s when the default

is d is equal to: 
u ((1− s)w) + (δ + χ) (1−ma)Vt+1 (s) if s < d

u ((1− s)w) + δVt+1 (s) if s = d

u ((1− s)w) + (δ − χ)Vt+1 (s) if s > d

This specification also captures the idea of cognitive dissonance: participants shift their time preference

to rationalize why the default may be optimal for them. Similar to loss aversion, Proposition 3 shows

that a model of psychological anchoring predicts that increasing the default contribution rate reduces

contributions at the lowest rates. A proof is presented in Appendix H.

Proposition 3. When the default serves as a psychological anchor, increasing the default contribution rate from

d to d weakly decreases contributions strictly below d:

Pr (s∗ < d | d = d) ≤ Pr
(
s∗ < d | d = d

)
2.4 Fact III: The median cumulative contributions of non-autoenrolled workers catch up

to the cumulative contributions of the autoenrolled over three years

I document that, at the median, non-autoenrolled workers accumulate the same total amount of retire-

ment savings as autoenrolled workers after 3 years of tenure. While similar evidence has been docu-

mented before in smaller samples (Choi et al., 2004),12 I offer a new interpretation. The fact that many

non-autoenrolled workers catch up with the autoenrolled by contributing more later implies that non-

autoenrolled workers are not fully forgoing the match and tax benefits of retirement savings by not

contributing early in their tenure. For instance, a non-autoenrolled worker who compensates for not

contributing in his first year by contributing 6% in his second year earns a cumulative employer match

and tax benefit that is similar to an autoenrolled worker who contributes 3% both years. This suggests

that a relatively modest opt-out cost can generate the observed inertia around the default contribution
12These authors document that the median 401(k) balance-to-pay ratio of non-autoenrolled workers catches up with the

autoenrolled after four years in company A, and over 2 years in company B (the same company studied previously by Madrian
and Shea, 2001).
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rate. In turn, a small opt-out cost implies that the long-term effect of auto-enrollment on both wealth

accumulation and welfare may be small for a majority of people.

The empirical evidence. I compare employees hired in the 12 months before to employees hired in

the 12 months after the introduction of an auto-enrollment policy in 34 U.S. firms. These firms offer a

50% match on contributions up to 6%, and moved from an opt-in to an auto-enrollment regime at 3% of

salary for new hires (this sample is described in more detail in Section 4.2). This match formula and auto-

enrollment default are the most common both in my sample of 401(k) plans in other large U.S. datasets

(Vanguard, 2018). Figure 1 shows the distribution of cumulative employee contributions in the two

groups. The numerator is the sum of all contributions made by an employee to the retirement savings plan

since her date of hire, and the denominator is her annual salary. Autoenrolled workers initially contribute

more to the retirement savings plan. However, both at the median and at the 75th percentile, the non-

autoenrolled employees catch up over three years and contribute a similar total amount to the 401(k)

plan as the autoenrolled workers (Figure 1, middle and right panels). At the bottom of the distribution

of cumulative employee contributions, however, the savings increases created by auto-enrollment persist

over three years (Figure 1, left panel).

Figure 1: Cumulative employee 401(k) contributions to annual salary ratios at the 25th, 50th and 75th
percentiles.
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Notes: The graphed series correspond to cumulative employee 401(k) contributions at each month of tenure divided
by individuals’ annual salary. The Pre-AE (Post-AE) cohort corresponds to employees hired in the 12 months before
(after) the introduction of an auto-enrollment policy at 3% of salary for new hires. The sample at each tenure level
corresponds to workers still employed by the firm at that time. Data source: administrative 401(k) records from 34
U.S. firms.
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Why previous studies estimated implausibly large opt-out costs. The middle panel of Figure 1 doc-

uments that, at the end of the first year of tenure, median cumulative employee contributions are equal

to zero for non-autoenrolled workers and equal to around 3% of salary for autoenrolled workers (i.e. the

auto-enrollment default in the sample). This implies that, by the end of their first year of tenure, autoen-

rolled workers have earned substantially more employer matching and tax benefits than non-autoenrolled

workers. Because the difference in benefits earned by the autoenrolled and non-autoenrolled workers is

large, previous studies have suggested that implausibly large opt-out costs are required to rationalize iner-

tia around the default contribution rate. DellaVigna (2009, 2018) sets the minimum opt-out cost above

$1,000 with time-consistent preferences, based on a back-of-the-envelope calculation of annual matching

benefits for the median worker. Bernheim et al. (2015) estimate a median opt-out cost of $2,200 using data

on workers’ first few quarters of tenure. These opt-out cost estimates come from settings that do not allow

for future adjustment of the contribution rate and are therefore sensitive to the period of observation.

Why the opt-out cost may be smaller in a fully dynamic setting. By the end of the third year of

tenure, median cumulative contributions of non-autoenrolled workers catch up to those of autoenrolled

workers (Figure 1, middle panel). This fact implies that both groups of workers earn a similar total

amount of employer matching contribution and tax benefits.13 Hence, applying the previous back-of-the-

envelope calculation using data from the end of the third year of tenure would imply that the opt-out cost

is negligible at the median. As estimated opt-out costs are sensitive to the period of observation in models

that do not allow for the dynamic adjustment of contributions, it is necessary to use a fully dynamic model

to obtain a consistent estimate of the opt-out cost. I show in Section 4.7 that, in a dynamic lifecycle model,

an opt-out cost of around $250 generate the same pattern of behavior documented in Figure 1.

Implication for auto-enrollment’s long-term effect on wealth. Given that, at the median and above,

non-autoenrolled workers’ cumulative contributions catch up over three years with the autoenrolled’s cu-

mulative contributions (Figure 1), the long-term auto-enrollment effect on wealth is likely to be small for

a majority of people. However, savings increases created by autoenrollment persist at the 25th percentile

of the distribution of cumulative employee contributions. Will the large effect on retirement savings at

the bottom persist in the long run and create welfare gains that justify the auto-enrollment policy? In the

next section, I develop a dynamic structural model to address this question.

13Note that, at the median, neither the autoenrolled nor the non-autoenrolled workers contribute above the 6% threshold on
employer matching. Thus, a similar level of cumulative employee contributions implies a similar level of cumulative employer
contributions.
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3 A Lifecycle Model with Default Effects

Motivated by the empirical evidence presented in the previous section, I develop a new lifecycle model

with default effects. Before detailing the model, I provide a short summary of its key features. Every

period, individuals choose a level of consumption, retirement wealth, liquid wealth, and unsecured debt.

Individuals incur a utility cost every time they choose a retirement contribution rate that is different

from the default. Their contribution choice becomes, in turn, the next period’s default’s contribution

rate. Other important components of the model are: i) a labor market with uninsurable earnings and

employment risk; ii) a progressive tax and benefits system with Social Security-style public pensions, iii)

realistic retirement savings accounts with employer matching contributions and favorable tax treatment,

and iv) demographic change over the lifecycle with stochastic mortality and evolving household compo-

sition.

In what follows, I introduce the baseline model. Table 8 in Appendix A gives a summary of all the

parameters introduced in this section. In Appendix B, I explore two extensions to the baseline model

with respectively present-biased preferences and an opt-out cost proportional to employees’ earnings.

3.1 Opt-out costs

Individuals in the model act as if they are required to pay a utility cost every time they change their

contribution rate. This opt-out cost captures both real transaction costs as well as several behavioral ex-

planations of the default effect, such as the cost of seeking advice from a financial adviser or the cognitive

costs of paying attention or finding an optimal choice. A broad class of behavioral theories, axiomatized

by Masatlioglu and Ok (2005), satisfies this representation. Goldin and Reck (2018) show a correspon-

dence between these opt-out costs and models of inattention, status-quo bias and defaults as implicit

advice. Consistent with the importance of cognitive and complexity costs, both Choi et al. (2009) and

Blumenstock et al. (2018) find that more employees make an active decision when the enrollment process

is simplified or when they receive help computing the implications of alternative savings scenarios.

The opt-out cost model also captures the role of present bias. While present bias does not, by itself,

generate inertia around the default option, it can exacerbate the effect of a small opt-out cost. People with

present-biased preferences behave as if the opt-out cost is larger because they incur this cost in the present

while the benefits of retirement saving are in the future (O’Donoghue and Rabin, 1998; Carroll et al.,

2009; DellaVigna 2009 and 2018). My baseline opt-out cost estimate can thus be interpreted as capturing
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the combined effect of present bias and other real and behavioral costs.14 In a separate extension in

Appendix B.1, I reject a model where present bias directly affects contributions.15

3.2 Demographics and preferences

Age is indexed by a and working life starts at age 22. Each period t is one quarter. Mortality is stochastic;

individuals survive each period with probability 1−ma and die with certainty at ageA. The period utility

function, given in equation (1), is of the isoelastic form with a constant elasticity of intertemporal substi-

tution σ. An equivalence scale na in the utility function captures the evolution of household composition

over the lifecycle.

ua ( · ) = na

(
·
na

)1− 1
σ

1− 1
σ

(1)

3.3 Labor market

Individuals in the model face uninsurable earnings and employment risk. Every period, they can be in

one of four employment states empt: continuously employed (E ), newly employed following a job-to-job

transition (JJ ), unemployed (U ), or retired (Ret).

Continuous employment. When employed, individuals receive uncertain labor earnings. The log of

labor earnings, given in equation (2), is equal to the sum of a deterministic component (a cubic in age)

and a stochastic component θt.

ln wt = δ0 + δ1at + δ2a
2
t + δ3a

3
t + θt (2)

The stochastic component θt follows an AR(1) process with normally distributed innovations ξ (equa-

tion (3)). The variance of these innovations is different in the first period than in subsequent periods to

account for initial heterogeneity in income at age 22.

θt = ρθt−1 + ξt if empt = E (3)

ξ1 ∼ N
(

0, σ2ξ1

)
ξt ∼ N

(
0, σ2ξ

)
∀ a > 1

14Note that it is, in principle, possible to identify present bias separately from other forms of contribution switching costs
using data on both 401(k) contributions and liquid asset holdings. Beshears et al. (2018) study a setting with such linked data.

15Contribution decisions are implemented by employers with a delay (usually at the beginning of the next pay period). As
noted by Carroll et al. (2009), this implies that a contribution rate choice may serve as a commitment to save in the future,
starting from the next paycheck, which means that the contribution rate choice is unaffected by present bias.
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Job-to-job transitions. Job-to-job transitions are modeled separately from continuous employment

because pension arrangements change when moving jobs. An employee switches employer with a prob-

ability πJJ (a, ten) that depends on her age and her tenure in her current job. A job-to-job transition is

associated with a new earnings draw (equation (4)). The labor earnings innovation ζt has mean µJJ > 0

to capture the earnings premium associated with job-to-job transitions.

θt = ρθt−1 + ζt if empt = JJ (4)

ζt ∼ N
(
µJJ , σ2ξ

)
Unemployment. The probability of moving into unemployment πEU (a, ten) depends on both age

and tenure. Unemployed individuals receive unemployment insurance benefits ui (θt), described in Sec-

tion 3.7. The stochastic component of earnings θt stays constant during an unemployment spell. An

unemployed individual transitions back to employment with an age-dependent probability πUE (a). The

earnings innovation in the new job ςt has mean µUE < 0 to capture the earnings loss associated with job

displacement (equation (5)).

θt = ρθt−1 + ςt if empt = U (5)

ςt ∼ N
(
µUE , σ2ξ

)
Retirement. Individuals retire deterministically at age Aret. They receive a Social Security-style

public pension in retirement, described in Section 3.7.

3.4 Decisions

In the model, people save for both precautionary motives (to insure against bad labor earnings realizations

and unemployment risk) and for life-cycle motives (to complement Social Security in retirement). Every

period, they make two decisions: how much to hold in liquid taxable wealth (bt) and how much to

contribute or withdraw from a tax-deferred defined contribution (DC) retirement account (dct).

Liquid taxable wealth. People start their lives with zero liquid wealth. Every period thereafter,

they choose a level of liquid asset holdings lt+1. Contributions to the liquid asset are made out of after-tax

income. Positive liquid asset holdings grow at a constant rate 1+r and these returns are subject to a capital

tax τk. Borrowing up to a limit la is allowed, reflecting the availability of unsecured credit. Borrowing is
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subject to a higher interest rate 1 + rCC . The after-tax interest rate on liquid assets is thus given by:

Rliq (l) =


1 + r

(
1− τk

)
if l ≥ 0

1 + rcc if l < 0

DC contributions. Employees can contribute a fixed percentage of their labor earnings st ≥ 0

to a DC account. Contributions are subject to an age-dependent maximum contribution limit set by

the government, such that wtst ≤ limita. DC contributions are tax-deferred and, thus, reduce taxable

income in the contribution period. DC wealth dct earns the same risk-less return r as the liquid asset but

these returns are not subject to capital taxation (Rdc = 1 + r).

DC withdrawals. People can withdraw a fraction drawt ∈ [0, 1] of their DC wealth when unem-

ployed or retired.16 Withdrawals are subject to both income taxation and—depending on the individual’s

age—an additional tax penalty pena for early withdrawals.

3.5 Retirement savings plans

Employers are heterogeneous in the matching formula and default option of their retirement savings plan

(indexed by e). Employer contributions to the DC account, denoted ece, are characterized by a level of

non-contingent contributions (fixede), a match rate that is a function of tenure (matche (ten)), and a

threshold contribution rate for matching contributions (cape). Contributions above this threshold do

not earn any match contribution from the employer. An employee contributing st receives an employer

DC contribution equal to:

ece (st, tent) = (fixede +matche (tent)×min {st, cape})wt

3.6 Default mechanism

Default contribution rate. In the first period in a job, the default contribution rate d̄e is drawn from the

exogenous distribution of employer typesE (�). It is equal to zero under the opt-in enrollment regime and
16 Some 401(k) plans offer hardship withdrawals and loan options for employed participants, but these early distribution

options are discouraged by the tax code. Hardship withdrawals are subject a 10% tax penalty and trigger a minimum six month
suspension from contributing to the plan. 401(k) loans are only exempt from the tax penalty if repaid in full before the worker
leaves her job. Furthermore, interest payments on 401(k) loans are taxed twice: payments are made with after-tax dollars and
are taxed again at distribution (see Beshears et al., 2008).
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strictly positive under auto-enrollment. Later in a worker’s tenure, the default equals her contribution

rate in the previous period; it is therefore endogenous to individuals’ saving decisions:

dt =


d̄e ∼ E (�) if tent = 1

st−1 if tent > 1

Opt-out cost. In order to change their contribution rate away from the default, people have to incur a

utility cost k. The period-utility of an employee contributing st to her DC plan is therefore given by:

ua
(
ct − 1(st 6=dt)k

)
As discussed previously in Section 3.1, this utility cost k captures both neoclassical transaction costs

as well as a wide range of behavioral costs such as the cognitive cost of paying attention or finding the

optimal choice.

3.7 Government

Taxes. Agents face a non-linear income tax schedule taxi (�). DC accounts are treated favorably by the

tax system: contributions are not subject to income taxation, but withdrawals (in either unemployment

or retirement) increase taxable income by the withdrawal amount17. Taxable income is equal to labor

earnings plus DC withdrawals minus DC contribution. Returns on capital are taxed at a constant rate τk

but DC wealth is exempt from capital taxation.

Unemployment benefits. People receive a benefit ui (θt) when unemployed. This benefit depends

on labor productivity in the last period of previous employment.

Public pension benefits. After retirement, individuals receive Social Security-style public pension

benefits. Public pension benefits ss (�) are computed according to a non-linear schedule with an income

floor. The amount received depends on the individual’s average lifetime earnings aeTR . The law of motion
17 This is the traditional tax-deferred DC model. I abstract from the more recent, and less common, Roth-401(k) tax model

where DC contributions are taxed up front.
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of average lifetime earnings is given in equation (6).

aet+1 =


wt+1+ataet

1+at
if at < Aret

aeAret if at ≥ Aret
(6)

3.8 State variables

The dynamic optimization problem is characterized by 9 state variables: age (a), employment status

(emp), tenure (tent), employer DC plan type (e), labor productivity (θ), average lifetime earnings (ae),

liquid assets (l), DC wealth (dc) and the default contribution rate d. The vector of state variables is

denoted Xt = [at, empt, tent, et, θt, aet, lt, dct, d]. There is uncertainty over survival to the next period

(with mortality probability (ma)), the stochastic component of earnings (θ), employment status (emp),

and the type of the future employer after a job change (e). The joint distribution of earnings, employment

and employer types is denoted F (θt, empt, et).

3.9 Individual maximization problem

Individuals maximize discounted intertemporal utility with an exponential discount factor δ. In what

follows, I introduce the recursive optimization problem in periods of retirement, employment, and un-

employment.

Individual problem in retirement (after the age of 65). The only source of uncertainty in retire-

ment is mortality risk. Retired individuals decide every period how much to hold in the liquid asset and

how much to withdraw from the DC account.

Vt (Xt) = max
drawt,lt+1≥la

ua (ct) + δ (1−ma)Vt+1 (Xt+1)

s.t. lt+1 = Rliq (lt+1)
[
ss (aeAret) + drawtdct + lt − ct − taxit

]
dct+1 = Rdc ((1− drawt) dct)

Individual problem when employed. People are employed following a job-to-job transition, an

unemployment-to-employment transition or while in continuous employment. They face earnings and

employment risk and decide how much to save in liquid wealth or borrow through unsecured credit and

how much to contribute to the DC account. The decision is in two steps.
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In the first step, for every possible DC contribution choice s in the discrete set S, the worker solves

for the optimal amount of liquid wealth or unsecured debt to hold subject to the intertemporal budget

constraint 7. The value of choosing a contribution rate s is thus given by:

V s
t (Xt) = max

lt+1

ua
(
ct − 1(st 6=dt)k

)
+ δ (1−ma)

∫
Vt+1 (Xt+1) dF (θt, empt, et)

s.t. lt+1 = Rliq (lt+1)
[
(1− st)wt + lt − ct − taxit

]
(7)

lt+1 ≥ la

In the second step, the worker selects a DC contribution rate s subject to a tax limit on DC contribu-

tions:

Vt (Xt) = max
st∈S

{V s
t (Xt+1)}

s.t. stwt ≤ limita

dct+1 = Rdc (dct + stwt + ecet )

Individual problem when unemployed. After an unemployment shock, people receive constant

unemployment benefits and face uncertainty about finding a job and the wage and type of DC plan in

their future job. They decide how much liquid wealth or unsecured debt to hold and how much to

withdraw from the DC account.

Vt (Xt) = max
drawt,lt+1≥la

ua (ct) + δ (1−ma)
∫
Vt+1 (Xt+1) dF (θt, empt, et)

s.t. lt+1 = Rliq (lt+1)
[
uit + drawt (1− pena) dct + lt − ct − taxit

]
dct+1 = Rdc (1− drawt) dct

This dynamic optimization problem does not admit a closed form analytical solution. The numerical

solution procedure is discussed in appendix F
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4 Estimation and Model Fit

4.1 Method of Simulated Moments

I estimate the model parameters in two stages18. In the first stage, I set a number of parameters outside

of the model, either estimated directly from the data or coming from previous literature. In the second

stage, I use the Method of Simulated Moments to estimate the model’s three preference parameters: the

intertemporal discount factor (δ), the elasticity of intertemporal substitution (σ), and the opt-out cost

(k).

4.2 Data and quasi-experimental variation

Estimation sample. I estimate the model’s preference parameters using individual-level 401(k) contri-

bution data on employees hired right before and right after the introduction of auto-enrollment. I use

the dataset described previously in Section 2.1.1, and I restrict the sample to 401(k) plans that: (i) have

a 3% initial auto-enrollment default contribution rate and no auto-escalation feature,19 (ii) offer a 50%

employer match contribution up to 6% of income, (iii) and for which the exact date of auto-enrollment

adoption is available. 34 firms satisfy these inclusion criteria. I restrict the sample to employees hired in

these 34 firms in the 12 months before or 12 months after the introduction of automatic enrollment, and

who are observed after the end of the auto-enrollment grace period (10,317 employees before and 9,053

after the policy).20 I use this sample to estimate second-stage parameters.

Quasi-experimental variation. Figure 2 shows the frequency of contributions at exactly 3% of

salary—the default contribution rate—among employees with up to 12 months of tenure, by date of

hire relative to the date of the adoption of auto-enrollment. In their first year of tenure, employees hired

under auto-enrollment are 70 percentage point more likely to contribute the default contribution rate (i.e.

exactly 3% of salary) than employees hired in the year before the introduction of the policy. The magni-

tude of these results is in line with previous evidence in Choi et al. (2006) from 4 firms using the same

identification strategy. I exploit this quasi-experimental variation in the enrollment regime to identify the

model preference parameters.
18This two-step procedure is typical in the estimation of lifecycle models (see, among others, Gourinchas and Parker (2002),

Low et al. (2010), Laibson et al. (2017), and O’Dea (2018)).
19Auto-escalation is a feature in some retirement plans, whereby the contribution rate increases automatically every year

unless the participants actively opt out.
20Employees can withdraw, without a tax penalty, any amount automatically contributed to a 401(k) plan if they opt out

before the end of a grace period, typically one to three months from the date of hire. Workers forfeit any matching contribution
that would have been made for the automatic enrollment contributions.
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Figure 2: Share of workers contributing the default contribution rate in their first year of tenure
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Notes: Every point corresponds to the share of workers, with up to 12 months of tenure, contributing exactly 3%
of salary. The horizontal axis corresponds to the difference between workers’ date of hire and the date automatic
enrollment was introduced for new hires. Data source: administrative 401(k) records from 34 U.S. firms.

4.3 Identification of preference parameters

The three model preference parameters are jointly estimated. In what follows, I discuss which variation

in the data allows for the identification of each parameter.

Time preferences. The model has two parameters governing saving preferences: the elasticity of

intertemporal substitution (σ) and the intertemporal discount factor (δ). Since both parameters affect

saving decisions, it is often difficult to obtain separate identification from lifecycle saving profiles alone.

To overcome this challenge, I exploit a discontinuity in the savings interest rate at the employer matching

contribution threshold. In the estimation sample, contributions up to 6% of income are matched by the

employer at 50%, while contributions above the threshold are not. Bunching of employee contributions

at 6% can therefore be used to identify the elasticity of intertemporal substitution separately from the dis-

count factor, which governs the overall level of saving. This approach is similar to Best et al. (2018), who

use jumps in the mortgage interest rate at thresholds for the loan-to-value ratio to identify the elasticity

of intertemporal substitution.

Opt-out cost. I compare the contribution behavior of employees hired before versus after the adop-

tion of auto-enrollment to identify the size of the opt-out cost. Since both groups of employees face similar

economic incentives, absent the opt-out cost, they should make similar contribution choices. Bunching

of contributions at the 3% default contribution rate in the auto-enrollment group (and its evolution with

tenure) identifies the size of the opt-out cost.
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4.4 First-stage parameters

4.4.1 Labor market parameters

I use data from the Survey of Income Programs and Participation (SIPP) to estimate the parameters of the

labor earnings process and labor market transition probabilities. The data is aggregated at the quarterly

level. Details on the sample and the treatment of the data are discussed in Appendix D.

Earnings process. I estimate the labor earnings process for workers staying in the same job using a

standard two-step minimum distance approach similar to Guvenen (2009) and Low et al. (2010). The em-

pirical income process is given in equation (8). It is the empirical counterpart of the model earning process

in equation (2) with one additional term: serially uncorrelated measurement error ιi,t ∼ N
(
0, σ2ι

)
.

ln wi,t = δ0 + δ1ai,t + δ2a
2
i,t + δ3a

3
i,t + ηi,t︸︷︷︸

θi,t+ιi,t

(8)

The estimation has two steps. In the first step, I estimate the parameters of the deterministic component

of earnings
(
{δj}3j=0

)
—a cubic in age. In the second step, I use the residual from regression (8) to estimate

the five parameters governing the stochastic component of earnings: the coefficient of autocorrelation in

earnings shocks (ρ), the variances of the first earnings innovation (σ2ξ1 ), the variance of subsequent inno-

vations (σ2ξ ), and the variance of measurement error (σ2ι ). I estimate these five parameters by minimizing

the distance between the empirical variance-covariance matrix of earnings residuals and its theoretical

counterpart implied by the statistical model. The parameters of the income process I estimate (given in

Table 3) are in line with other results from the literature. In particular, I estimate very persistent income

innovations, almost following a unit root, with a coefficient of autocorrelation ρ = 0.974.

Table 3: Earnings process estimates
Age component Stochastic component of earnings

δ0 δ1 δ2 δ3 ρ σ2ξ1 σ2ξ σ2ι

1.632 0.094 −0.00107 3.9e−7 0.974 0.184 0.0125 0.10

Notes: Quarterly earnings process estimated using a two-step minimum distance estimator on a panel of workers
continuously employed in the same job. Data source: U.S. Survey of Income and Program Participation.

Earnings after a transition. I estimate the median change in log salary following a job-to-job transi-

tion (µJJ ) to be equal to 0.048. I estimate that job transitions following a period of unemployment are

associated with a loss in earnings. I estimate the median change in log salary relative to the last salary

prior to unemployment (µUE ) to be equal to −0.078.
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Numeraire. The average net compensation per worker in the U.S. was around $37, 078 in 2006 (from

the Social Security Administration national average wage index). This is also almost equal to the median

annual salary in the estimation sample ($37, 998 in 2006 dollars).21 I calibrate average quarterly earnings

equal to w = $9, 250.

Labor transition probabilities. I use SIPP micro-data to estimate quarterly job-to-job (πJJ ) and job

to non-employment (πEU ) transition probabilities by age and tenure and job finding rates (πUE ) by age.

The probability that an employed individual switches to another job (given in equation (9)) or moves to

non-employment (given in equation (10)) is the sum of an age component (i.e. a fifth-order polynomial

in age) and a tenure component (a set of dummies for employees in their first 9 quarters of tenure):

πJJ (a, ten) =

5∑
k=1

αJJk a k +
9∑
j=1

ιJJk 1(ten=j) (9)

πEU (a, ten) =
5∑

k=1

αEUk a k +
9∑
j=1

ιUEk 1(ten=j) (10)

The probability that an unemployed individual finds a job, given in equation (11), is defined as a

fifth-order polynomial in age.

πUE (a) =
5∑

k=1

αEUk a k (11)

Estimates are reported in Appendix D. The initial unemployment rate is set equal to 22%, which is

the share not employed at age 22 in SIPP.

4.4.2 Other parameters

The remaining first stage parameters are taken from other papers or estimated directly from the data.

Demographics. Survival probabilities for each age are taken from the U.S. Social Security 2015 Actu-

arial Life Tables22. Changes in household composition over the lifecycle are captured by an equivalence

scale in the utility function. I use the equivalence scale by age estimated by Lusardi et al. (2017) on PSID

data (details in appendix D).
21I report the median rather than the average salary because the 401(k) administrative data I use do not have income data

consistently for non-participants. I restrict the sample to employees hired after auto-enrollment (where participation is above
94%) and assume that the 6% of non-participants earn below the median (consistent with the fact that participation tends to be
lower among low income workers).

22Death probabilities are given at a yearly frequency, while individuals make decisions every quarter in the model. I assume
that the quarterly death probability is equal to 0.25 times the annual probability.
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Assets. I set the annual (riskless) rate of return at 3%, which is equal to the long-term nominal

yield on government bonds over the sample period between 2006 to 2017.23 The annual interest rate

on unsecured credit is set at Rcc = 11.52%, the value estimated by Laibson et al. (2017) for the interest

rate on credit card debt adjusted for both bankruptcy and inflation. The borrowing constraint prior to

retirement is fixed and set equal to 74% of average quarterly earnings (la<Aret = 0.74w). This is the

average credit card limit estimated by Kaplan and Violante (2014) in the Survey of Consumer Finances.

Unsecured borrowing is not allowed in retirement: la≥Aret = 0.24

Vesting schedule. An employee who separates from her employer before the end of the vesting

period may lose part (or all) of the employer matching contribution. On average, in the estimation

sample, 52% of matching contribution are vested immediately and the vested percentage increases with

tenure. To capture the effect of vesting risk, I adjust employer contributions by a factor Υe (a, ten) ≤ 1

that depends both on the vesting schedule and on the probability that an employee—based on her age

and tenure—separates from her employer before the end of the vesting period (see Appendix D for more

details).

Tax system. In line with IRS rules, the maximum contribution limit for tax-deferred retirement

contributions (limita) is set equal to $3, 750 per quarter ($15, 000 annually) for individuals younger than

50 years old and $5, 000 after that in 2006 dollars. The tax penalty for early DC withdrawals (pent) is

equal to 10% before age 55 and to zero afterwards25. Income is taxed according to the 2006 federal income

tax schedule for a single individual. Capital income is taxed at a rate τk of 15% which implies that the

(net of tax) annual returns on liquid wealth is 2.55%.

Unemployment benefits. The unemployment insurance replacement rate ω is set at 40%—the average

replacement rate across all U.S. states (U.S. Department of Labor, 2018). In most states, the employer

contribution portion of an early 401(k) withdrawal is treated as compensation and reduces the amount of

unemployment benefit receipts. The treatment of DC withdrawals for computing unemployment benefits

in the model is discussed in Appendix D.

Social Security. Retirements benefits are computed according to the 2006 Social Security formula for

an individual retiring at the full retirement age (details in Appendix D).
23R is assumed to be exogenous, and I abstract form the equilibrium determination of the interest rate for two reasons.

First, the effect of auto-enrollment policies on aggregate savings is small, and second, the effect of the policy is concentrated on
low-income individuals (who hold a relatively small share of aggregate assets).

24This assumption is similar to Kaplan and Violante (2014). Absent this no-borrowing-in-retirement constraint, older individ-
uals in the model borrow excessively because their high mortality risk reduces their repayment liability.

25In the model, early withdrawals are only allowed in periods of unemployment. The tax code allows penalty-free 401(k)
hardship withdrawals for unemployed people older than 55, which is earlier than the normal 591/2 eligibility age for penalty-free
withdrawals.
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4.5 Second-stage parameter estimation

The three second-stage parameters (δ, σ, and k) are estimated using the Method of Simulated Moments.

The parameter estimates are chosen to minimize the distance between model-simulated and empirical

contribution patterns for employees hired before and after the introduction of auto-enrollment.

Simulation. To perform the estimation, I simulate 5, 000 individuals under two scenarios. In the opt-

in scenario, individuals face a 0% default contribution at the start of every job. In the auto-enrollment

counterfactual, they experience the same sequence of employment and productivity draws. However, each

simulated individual—at one randomly drawn job transition—unexpectedly faces a 3% default contribution

rate when starting a new job. I compare simulated contribution behavior under these two scenarios to

the empirical patterns of employees hired before and after the introduction of auto-enrollment.

Estimation moments. I use two sets of moment conditions (44 in total). First, I use the distribution

of contribution rates among employees in their first year of tenure: the fraction of workers contributing

0, 3%, 6%, and 10% or above of salary under both the opt-in and the auto-enrollment regimes (8 moment

conditions). Second, I use the evolution of contributions and participation over the first 4 years of tenure:

participation rate under opt-in, participation rate under auto-enrollment, and contributions at the auto-

enrollment default contribution rate (i.e. exactly 3% of salary) every quarter between the 5th and 16th

quarters of tenure (36 moment conditions).

Weighting matrix. In my baseline specification, I use as a weighting matrix the inverse of the diagonal

of the variance-covariance matrix of the second-stage moment conditions obtained by bootstrap. I use

this diagonal weighting matrix instead of the optimal weighting matrix because it has better small sample

properties (Altonji and Segal, 1996).

4.6 Results and model fit

Estimation results. I report second-stage parameter estimates in Table 4. Time preferences estimates in

my baseline specification (column 1) are broadly in line with values estimated in other lifecycle settings.

The quarterly discount factor δ = 0.987 (or 0.949 annually) is similar to estimates from Gourinchas and

Parker (2002), who find annual values between 0.930 and 0.962. The estimated elasticity of intertemporal

substitution σ = 0.435 is also standard in the literature.26 The opt-out cost is estimated at $254 every

time a worker changes her contribution rate, with a small standard error.

Robustness and sensitivity. My results are robust to using a different weighting matrix or a dif-
26Havránek (2015) reports a mean estimate of the elasticity of intertemporal substitution centered around 0.3 − 0.4, after

correcting for publication bias, in a meta-analysis of 169 published studies.
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ferent set of moment conditions. In column 2 of Table 4, I show that my estimates are very similar

when using the inverse of the full variance-covariance matrix of second-stage moment conditions as a

weighting matrix. In column 3, I estimate the model using only data on workers hired before the in-

troduction of auto-enrollment. The opt-out cost is less precisely estimated—with a standard error three

times larger—because non-participation in the retirement savings plan could either imply a high opt-out

cost or a low preference for saving. In contrast, column 4 shows that I obtain parameter estimates that

are very similar to the baseline results when I instead use data for autoenrolled workers only. In this case,

the bunching of contributions at the 3% default contribution rate can identify the size of the opt-out cost

separately from time preferences. In Appendix G, I report and discuss the sensitivity of my estimates

using the measure proposed by Andrews et al. (2017).

Table 4: Preference parameter estimates
...........(1)........... ...........(2)........... ...........(3)........... ...........(4)...........

Baseline Full var-cov Opt-in Autoenrolled
model weighting matrix workers only workers only

k $ 254 $ 268 $ 340 $ 258
(11) (17) (29) (11)

δ 0.987 0.987 0.988 0.987
(0.000) (0.001) (0.001) (0.001)

σ 0.455 0.444 0.454 0.426
(0.013) (0.015) (0.027) (0.012)

χ2 stat. 586 583 414 131
(df) 41 41 13 25

Notes: Column 1 presents baseline estimates with a weighting matrix equal to the inverse of the diagonal of the
estimated variance-covariance matrix of the second-stage moment conditions (Altonji and Segal, 1996). Column
2 shows results from estimating the model based using the inverse of the full variance-covariance matrix of the
second-stage moment conditions as a weighting matrix. Column 3 (column 4) presents estimates using only data
from workers hired in the 12 months before (after) the introduction of auto-enrollment. The last row shows results
from the χ2 overidentification test with associated degrees of freedom. Standard errors are in parentheses. Data
source: administrative 401(k) records from 34 U.S. firms.

Model fit. The model fits the data well despite requiring the estimation of only three preference

parameters. I report in Figures 3 and 4 the simulated behavior alongside the empirical moments used

in estimation. Figure 3 shows that under auto-enrollment, the model generates realistic bunching of

contributions at the default contribution rate (3% of salary) and at the match threshold (6% of salary).

However, the model tends to over-predict contribution at the match threshold among workers without

auto-enrollment. Figure 4 shows that the model replicates the evolution of contributions and participation

in the first four years of tenure. Participation increases with tenure for non-autoenrolled workers (Figure
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4, left panel) and stays constant at a high rate for autoenrolled workers (Figure 4, middle panel). Over

time, autoenrolled workers move away from the default contribution rate and, by the end of the fourth

year of tenure, only around 30% of them contribute exactly 3% (Figure 4, right panel). While the model

is estimated using 401(k) data only, I show in Appendix C.1 that my estimates are also consistent with

the evolution of total wealth accumulation over the lifecycle in the Survey of Consumer Finances.

Figure 3: Empirical and simulated distribution of contribution rates in the first 12 months of tenure
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Notes: The left (right) panel shows contribution rates of individuals hired in the 12 months before (after) the
introduction of auto-enrollment for new hires. The model series corresponds to simulations for identical individuals
under a 0% and a 3% default. Data source: administrative 401(k) records from 34 U.S. firms.

Figure 4: Empirical and simulated contribution behavior over 4 years of tenure
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Notes: The left (middle) panel shows the 401(k) participation rate of workers hired in the 12 months before (after)
the introduction of auto-enrollment for new hires. The right panel shows the share of workers hired under auto-
enrollment who contribute exactly 3% of salary (i.e. the auto-enrollment default). The model series are simulations
for identical individuals under a 0% and a 3% default. The empirical and simulated sample at each tenure level
correspond to workers still employed by the firm at that time. Data source: administrative 401(k) records from 34
U.S. firms.
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Overidentification test. The model is formally rejected by the χ2 overidentification test (reported

with associated degrees of freedom in the bottom row of Table 4).27 The failure of the overidentification

test appears to be driven by the fact that: (i) the empirical moments are, in general, estimated precisely

with a small variance, and (ii) the model both over-predicts contribution at the match threshold and

under-predicts contributions at 3% for workers hired before auto-enrollment.

4.7 Heterogeneity in short-run effects

My model is quite parsimonious, with only 3 preference parameters estimated on population averages,

but I show that it replicates the heterogeneity in auto-enrollment effects observed in the data. Capturing

this heterogeneity is important for making predictions about the long-term effect of the policy.

Figure 5: Empirical and simulated cumulative employee 401(k) contributions to annual salary ratios at
the 25th, 50th and 75th percentiles.
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Notes: The empirical series are the same as in Figure 1. The model series correspond to simulations for identical
individuals under a 0% and a 3% default. The empirical and simulated sample at each tenure level are workers still
employed by the firm at that time. Data source: administrative 401(k) records from 34 U.S. firms.

27Failure of the overidentification test is common in the estimation of lifecycle models (Gourinchas and Parker, 2002; Laibson
et al., 2017).
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First, I show that, in line with Fact III of Section 2, the auto-enrollment policy’s effect on retirement

savings is large at the bottom of the distribution of cumulative employee contributions and small at

the top. In addition, the median cumulative contributions of non-autoenrolled workers catch up to the

median cumulative contributions of autoenrolled workers after three years (Figure 5).

What causes auto-enrollment effects to be different across people? Other studies have suggested that

the opt-out cost may be heterogeneous across individuals (as in Bernheim et al., 2015) or that it is stochas-

tic and varies over time (as in Carroll et al., 2009 and DellaVigna, 2018). While these assumptions are

realistic, they are also difficult to discipline empirically. I take a more conservative approach and assume

that the opt-out cost is the same for all individuals in all periods. I show that the estimated model can,

nonetheless, fit and explain the differences in behavior across age and income groups.

I run a regression to estimate the differences in the propensity to stay at the default option across

different age and income groups. The outcome variable is the probability that an employee in her first

year of tenure contributes exactly 3% (the auto-enrollment default contribution rate) conditional on

participating in the plan. I condition on participation because, in the data, salary is only recorded consis-

tently for employees with a positive contribution rate. Because age and income are correlated, I interact

auto-enrollment status (based on date of hire) with both age and income group dummies. I estimate the

following linear probability specification controlling for both plan and year fixed effects:

Pr (si,t = 3 | si,t > 0) = α0+α1.PostAEi+

5∑
j=1

βj .PostAEi×ageji,t+
6∑
k=1

γk.PostAEi×incki,t+
5∑
j=1

β̃kage
j
i,t+

6∑
k=1

γ̃kinc
k
i,t+εi,t

(12)

I run the same specification in the empirical sample and in the simulated sample. Estimates for βj (the

treatment interactions with age groups) and γk (the treatment interactions with income groups) are re-

ported in Figure 6. In line with previous evidence (Madrian and Shea, 2001), young and low-income

workers have the largest increases in their propensity to contribute at the auto-enrollment default contri-

bution rate. The model captures well this heterogeneity; the coefficient estimates in the simulated sample

are all within the 95% confidence interval of the empirical coefficient estimates.
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Figure 6: Heterogeneity in default effects by age and income
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Notes: Each point corresponds to the coefficients of the interaction terms of autoenrollment status (based on a
worker date of hire) with income and age group dummies, estimated according to equation (12). The dependent
variable is a dummy equal to 1 if, conditional on participating, a worker observed in her first year of tenure con-
tributes exactly 3% (the auto-enrollment default contribution rate). The area between the dashed lines corresponds
to the 95% confidence intervals of the empirical coefficients. Data source: administrative 401(k) records from 34
U.S. firms.

Age heterogeneity. Conditional on participating, workers in their 20s are 20 percentage points more

likely to stay at the default contribution rate than workers in their late 50s and early 60s (Figure 6, left

panel). In the model, this heterogeneity reflects the fact that the option value of waiting to contribute

decreases with age. A young employee choosing not to save in a particular period has plenty of time to

accrue the tax and matching benefits by contributing more later in life. In contrast, there is no option

value to waiting in the last period prior to retirement. A worker about to retire permanently forgoes the

tax and matching benefits of retirement saving if she does not contribute.

Income heterogeneity. The lowest-income workers are 40 percentage points more likely to remain

at the default contribution rate than the highest-paid workers (Figure 6, right panel). In the model,

this heterogeneity is explained by the fact that (i) the opt-out cost represents a larger share of earnings

for low-income individuals, and to a lesser extent that (ii) high-income individuals have more to gain by

contributing to the retirement savings plan because they face a higher marginal tax rate and expect a lower

Social Security replacement rate. In Appendix B.2, I quantify these two channels. In particular, I show

that a specification of the model where the opt-out cost is proportional to individuals’ earnings does not

match the empirical heterogeneity in default effects by income.
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5 A Modest Opt-out Cost Explains the Evidence

My baseline opt-out cost estimate with time-consistent preferences of $254 is an order of magnitude

smaller than what previous studies have estimated. DellaVigna (2009, 2018) sets the minimum opt-out

cost needed to explain the observed inertia around the savings default with time-consistent preferences at

above $1,000 based on a back-of-the-envelope calculation of annual matching benefits. Similarly, Bernheim

et al. (2015) estimate an average opt-out cost of around $2,000 (and $3,200 among the 60% of employees

with positive opt-out costs). Because the size of the opt-out cost determines the long-term effect of auto-

enrollment on wealth and welfare, it is important to understand why my estimate differs from previous

work. I conduct a number of simulation exercises to identify which features of my model explain this

difference. My finding of a low opt-out cost is driven by the dynamic nature of decisions in the model,

the limited liquidity of retirement accounts, and (to a lesser extent) uncertainty about future income.

I fix time preferences to their estimated value (δ = 0.987 and σ = 0.455), and re-estimate the opt-out

cost under five alternative specifications of the model. Each specification changes one dimension of the

model parameterization separately. To make my results comparable with previous studies, I only use data

from employees’ first year of tenure.28 The opt-out costs estimated under each specification are reported

in Table 5.

Table 5: Contribution opt-out cost estimates under alternative scenarios
(1) (2) (3) (4)

Benchmark Sticky contributions Penalty-free withdrawals Perfect insurance
k $ 226 $ 752 $ 607 $ 322

(9) (26) (11) (1)

Notes: This table shows the opt-out cost estimated using the distribution of contribution rates in the first year of
tenure before and after auto-enrollment. Other preference parameters are kept constant at their estimated value.
Column 1 presents the estimated opt-out cost in the baseline model. Column 2 presents the estimated opt-out cost
when workers cannot change their contribution rate after the first period in a job. Column 3 presents the estimate
of the model with penalty-free DC withdrawals in unemployment. Column 4 presents the estimate of the model
with no income uncertainty. Standard errors are in parentheses. Data source: administrative 401(k) records from
34 U.S. firms.

1. Benchmark. As a benchmark, I re-estimate the opt-out cost under the baseline specification of the

model. The only difference is that I use a different set of empirical moment conditions (from the

first year of tenure only instead of 4 years of tenure). My estimate of the opt-out cost is barely

affected (Table 5, column 1). This suggests that the difference between my estimate and previous
28Specifically, I use 30 moment conditions targeting the distribution of contribution rates in the first year of tenure under opt-

in and under auto-enrollment (i.e. the share contributing 0%, 1%,...,15% of salary). The excluded categories are contributions
at 10% of salary under opt-in and under auto-enrollment.
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work is not driven purely by the fact that I consider a longer time frame; indeed, the estimated

opt-out cost is smaller when using data from the first year of tenure ($226), rather than from four

years of tenure ($254).

2. Sticky contributions. I assume that employees can only change their contribution rate in the first

period in a job.29 Workers can still contribute more in a future job, but they cannot compensate

for not saving early in their tenure by contributing more later in their tenure in the same job.

Under this scenario, I estimate an opt-out cost of $752, roughly three times larger than my baseline

estimate (Table 5, column 2). This highlights the important role of dynamics in explaining why

previous studies estimated implausibly large opt-out costs.

3. Penalty-free withdrawals. I assume that individuals of all ages can withdraw resources from the

DC account when unemployed without a tax penalty or reduction in unemployment benefits.

The more liquid the DC account is, the more valuable is the employer matching contribution.

Under this specification, a large opt-out cost of around $600 (Table 5, column 3) is needed to

rationalize why non-autoenrolled workers would forgo the matching contribution when they can

more easily withdraw and consume resources from the DC account. Indeed, if 401(k) accounts

were fully liquid, then contributing less than the matching threshold would be strictly inferior to

obtaining the full employer match.30 Absent a large opt-out cost, workers could contribute to earn

the maximum match benefit and increase their consumption at any time by withdrawing from the

account without penalty. This is the premise of the back-of-the-envelope calculation in DellaVigna

(2009, 2018) that sets the minimum opt-out cost needed to rationalize behavior in a standard model

equal to the value of potential employer matching contributions.

4. Perfect insurance. In the last model specification, I assume perfect insurance against income and

employment shocks within each cohort. All individuals of a given age group earn the same income

independent of their earnings productivity draws and employment status. Reducing income uncer-

tainty increases the opt-out cost estimate from $226 to $322 (Table 5, column 4). First, reducing

income uncertainty lowers individuals’ precautionary saving motive and makes DC savings more

desirable relative to liquid savings. Second, similar to an S-s model, lower uncertainty reduces the

inaction range. Workers have less incentive to wait when the future is less uncertain. Together,
29Specifically, I set the opt-out cost equal to infinity after the first period of tenure: k =∞ if ten > 1
30Choi et al. (2011) study a setting where employees could, almost immediately, increase their consumption by contributing

at the matching threshold and withdrawing the contribution right away. In practice, such situations are quite uncommon, as it
only concerns employees older than 591/2 with fully vested contributions in 401(k) plans that do not place any restrictions on
in-service distributions.
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these two mechanisms induce workers to make more active decisions when uncertainty is lower

and, therefore, require a larger opt-out cost to generate the observed level of inertia around the

default. This effect is, however, relatively small compared to the role of liquidity and dynamics.

6 Long-run Increases in Wealth are Small Except at the Bottom

I use the estimated model to predict the effect on lifetime savings of a typical auto-enrollment policy of

3% of salary adopted by all employers. This is the most common default contribution rate in U.S. 401(k)

plans (Plan Sponsor Council of America, 2018). I find that auto-enrollment’s effect on lifetime savings is

small for most people, but the policy increases wealth accumulation at the bottom of the lifetime earnings

distribution. Furthermore, in line with the empirical evidence from Chetty et al. (2014) and Beshears

et al. (2018), I find limited crowd-out of liquid savings by the auto-enrollment policy. I explore a richer

set of policy counterfactuals with a default contribution rate of 6% or 10% of income in Appendix C.2.

Model simulation. I simulate the long-term effect of a typical auto-enrollment policy at 3% of income

if it were adopted by all employers. I assume that the matching formula is the same in all jobs (i.e. a 50%

match for contributions up to 6% of salary, with immediate vesting). I define lifetime earnings as the sum

of all labor income and unemployment benefits earned between the ages of 22 and 65. I measure the auto-

enrollment effect on wealth as the difference between each individual’s savings under the auto-enrollment

policy and the same individual’s savings under an opt-in regime. Figure 7 shows the percent change in

total wealth at retirement, defined as the sum of liquid and retirement assets at the age of 65, for each

decile of lifetime earnings. Figure 8 shows the change in liquid assets, DC pension assets, and total wealth

created by the policy throughout the lifecycle for individuals in different quintiles of lifetime earnings.

Auto-enrollment effect on lifetime savings is small for most. For the majority of people, the auto-

enrollment effect on wealth is small: wealth at retirement is changed by less than 2% for the top 7 deciles

of lifetime earnings. Furthermore, an auto-enrollment policy at 3% of salary reduces wealth at retirement

for individuals in the top two deciles of lifetime earnings (Figure 7). This is because many high-income

workers contribute above 3% in the opt-in regime, but stay at the 3% default under auto-enrollment.

However, it is important to note that this effect is small: total wealth at age 65 is reduced by less than 1%

for individuals in the top two decile of lifetime earnings.
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Figure 7: The effect of auto-enrollment on total wealth at age 65
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Notes: Each bar corresponds to the model-predicted percentage difference between the sum of retirement and liquid
wealth at age 65 under an auto-enrollment policy at 3% adopted by all employers versus an opt-in regime adopted
by all employers. Changes are expressed as a fraction of wealth at age 65 under the opt-in regime.

Figure 8: The life cycle effect of auto-enrollment on retirement savings, liquid assets, and total wealth
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Notes: Each series corresponds to the model-predicted difference between assets under an auto-enrollment policy at
3% and an opt-in regime, adopted by all employers. Changes are expressed as a fraction of each simulated individual
average annual earnings between the ages of 22 and 65.
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Lifetime savings increase at the bottom. At the bottom decile of the lifetime earnings distribution,

auto-enrollment increases total wealth at retirement by more than 12% (Figure 7). Savings increases

created by auto-enrollment are concentrated in the first 20 years of working life, and are largest around

the age of 45: individuals in the bottom quintile hold an additional 20% of average lifetime earnings under

auto-enrollment (Figure 8). In the second half of working life, however, the wealth effect dominates;

autoenrolled workers contribute less to the retirement savings account because they have accumulated

more wealth early in life. At the bottom of the lifetime earnings distribution, nearly one-third of the

increased savings created by auto-enrollment is undone by lower contributions between the ages of 45

and 65. This result suggests that, even with long-term data following individuals over 20 years, empirical

estimates of the auto-enrollment effect on wealth may overstate the policy effect on lifetime savings.

Limited crowd-out of liquid savings. As shown in Figure 8, there is limited crowd-out of liquid as-

sets by the auto-enrollment policy. Most increases in retirement savings created by the policy result in in-

creased total wealth accumulation. In the model, the liquid asset (i.e. both liquid wealth and high-interest

rate unsecured borrowing) serves a precautionary saving motive, while the DC account serves a lifecycle

saving motive. Because the two assets serve different purposes, there is limited substitution between the

two. Furthermore, as in Kaplan and Violante (2014), the marginal propensity to consume out of liquid

assets is high in the model, so autoenrolled workers reduce their consumption in response to a decrease

in disposable income created by the policy. This effect is particularly strong for low-income individuals,

who have fewer liquid assets and are more liquidity-constrained. For individuals in the bottom quintile

of lifetime earnings, I find that 89% of the increase in retirement savings created by auto-enrollment at

the age of 65 passes through to total savings (Figure 8, left panel). In contrast, there is more crowd-out

of liquid savings for individuals in the middle quintile of lifetime earnings, as these individuals face less

severe liquidity constraints. Still, 62% of the increase in retirement savings created by auto-enrollment

at the age of 65 translates into higher total wealth accumulation for individuals in the middle quintile of

lifetime earnings (Figure 8 middle panel). These results align with the empirical evidence from Beshears

et al. (2018) and Chetty et al. (2014). Beshears et al. (2018) find that auto-enrollment caused no significant

increase in unsecured debt after four years. Similarly, Chetty et al. (2014), studying a different policy in

Denmark, estimate an 80% pass-through of retirement savings contributions to total savings.
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7 Auto-enrollment Effects are Stable Across Different Settings

The main advantage of structural estimation is the ability to extrapolate effects to a different policy,

population, or institutional environment. In this section, I show that my estimates predict behavior

reasonably well in two different contexts. First, I validate my estimates in 86 other U.S. firms. Second,

I use estimates from the U.S. sample to predict U.K. workers’ response to a national policy rollout. The

out-of-sample performance of the model gives credibility to its long-term predictions.

7.1 Out-of-sample validation I: other default contribution rates

In this section, I show that the model—estimated using the introduction of auto-enrollment at 3% of salary

in 34 U.S. firms—predicts behavior out-of-sample in the 86 U.S. firms used to document Fact II of Section

2. These 86 U.S. firms increased their default contribution rate from a positive default to an even higher

default. As shown previously in Section 2.3, worker’ response to increasing the default contribution rate

is crucial for identifying the mechanism through which defaults affect behavior.

In column 1 of Table 6, I disaggregate the evidence presented in Table 2. I estimate 11 separate

linear probability regressions for each observed pair of initial and post-increase default contribution rates.

The outcome variable is a dummy equal to 1 if a worker contributes strictly below the initial default

contribution rate. For instance, if the default is increased from 3% to 6% of salary, this corresponds to

contributions at 0, 1%, or 2% of salary.

In column 2 of Table 6, I present the model prediction for each of these changes in the default con-

tribution rate. I use the same calibration and simulation procedure used for estimation in Section 4, but

impose different auto-enrollment defaults. I test the difference between the empirical estimates and the

model out-of-sample predictions, and report the corresponding p-values in column 5. I cannot reject at

the 10% level that the model prediction is equal to the empirical estimate in 8 out of the 11 considered

cases (covering 71 out of the 86 firms and more than 85% of workers in the sample).
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Table 6: Out-of-sample validation of the model predictions in 86 U.S. 401(k) plans

Contribution rate < initial default Sample size Model vs data
........(1)........ ........(2)........ (3) (4) .....(5).....

Data Model Nbr. of Nbr. of P-value of
86 plans prediction plans workers difference

Default increased by 1%
Default 2%→ 3% 0.017 0.007 11 31,364 [0.483]

(0.014)
Default 3%→ 4% 0.016 0.005 10 13,116 [0.430]

(0.013)
Default 4%→ 5% -0.003 0.013 3 1,821 [0.513]

(0.020)
Default 5%→ 6% -0.016 0.034 5 3,970 [0.005]

(0.009)
Default increased by 2%

Default 1%→ 3% 0.023 0.020 1 1,067 [0.917]
(0.025)

Default 2%→ 4% -0.005 0.012 4 1,793 [0.231]
(0.011)

Default 3%→ 5% 0.022*** 0.018 14 56,011 [0.456]
(0.005)

Default 4%→ 6% 0.031*** 0.047 9 17,989 [0.048]
(0.007)

Default 6%→ 8% 0.067*** 0.148 1 673 [0.000]
(0.021)

Default increased by 3 or 4%
Default 3%→ 6% 0.045*** 0.052 26 27,190 [0.648]

(0.016)
Default 3%→ 7% 0.060 0.132 2 4,219 [0.146]

(0.017)

Individual’s characteristics X
Plan FE X

* p<0.10, ** p<0.05, *** p<0.01

Notes: Column 1 reports coefficients from a linear probability regression where the dependent variable is dummy
indicating that a worker, observed in her first year of tenure and after the end of the grace period, contributes
strictly below the initial default contribution rate. The coefficients correspond to the difference between employees
hired before and after each combination of initial and post-increase auto-enrollment default contribution rates.
Additional controls for individuals’ characteristics include log of tenure, age, age square, and age cube. Column 2
reports the model prediction for each change in the default contribution rate. Columns 3 and 4 report the number
of observations in each pair of initial and post-increase default contribution rates. Column 5 reports the p-value of
the difference between the empirical coefficient and the model prediction. Standard errors clustered at the firm level
are in parentheses. Data source: administrative 401(k) records from 86 U.S. firms.
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7.2 Out-of-sample validation II: U.K. national auto-enrollment policy

I exploit the rollout of the U.K. national auto-enrollment policy to validate my estimates in a completely

different population and institutional environment (details of the policy rollout are provided in Appendix

E). I use this policy variation in two ways. First, I compare the contribution choices of workers within

the same firms right before and right after the auto-enrollment rollout to the model predictions. Second,

I compare the model prediction to the empirical estimate of auto-enrollment’s effect after changing jobs

(Fact I of Section 2).

U.K. calibration. I calibrate the model to match the U.K. tax, unemployment insurance, and pub-

lic pension system. Of particular interest, the calibration captures the fact that unlike in the U.S. (i)

early withdrawals from a retirement savings account are not allowed in the U.K., and (ii) the average re-

placement rate from public pensions is lower in the U.K. than in the U.S. I use individual-level data from

ASHE (prior to the beginning of the auto-enrollment rollout) to estimate the heterogeneity of employers’

contribution formulas across firms and the parameters of the income process (with the same two-stage

procedure described in Section 4.4.1). I group employers into 5 types based on their employer contribu-

tion formula. Other first-stage parameters are set equal to their value in the U.S. calibration. Details on

the data and calibration of the U.K. counterfactual are discussed in Appendix E.

Preference parameters. I set time preference parameters equal to their estimated value in the U.S.

sample (δ = 0.987 and σ = 0.435). Using the average exchange rate between the U.S. dollar and the

British pound over the sample period (2006 to 2017), I set the opt-out cost k = £160.

7.2.1 Within-job evidence

Empirical evidence. I compare workers’ participation and contribution behavior before and after the

policy rollout. The policy year corresponds to the first survey year in which the policy is binding for a

given firm.31 I compare contributions after the policy implementation to contributions in the same firms

two years prior to the policy.32

Model exercise. In the model, the policy is implemented at a randomly chosen quarter of employment

texp. Prior to texp, all employers offer an opt-in regime. After texp, all employees receive a 1% employer

contribution and those with a zero default contribution rate (both new hires and seasoned employees
31An alternative approach to this event study is to exploit the staggered implementation of the policy by employer size.

Cribb and Emmerson (2016) document very similar patterns in a difference-in-difference specification that takes advantage of
this policy variation. I favor a single difference approach because it is easier to compare to model simulations.

32Results are identical when using data three, four or five years prior to the policy. I exclude the year prior to the policy
because a number of firms moved to auto-enrollment a few months ahead of the legal deadline to do so.
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who did not contribute in period texp − 1) see their default contribution rate increased to 1% of income.

They can choose to contribute this amount or incur the opt-out cost and change their contribution rate.

The policy is unexpected, and after texp, all individuals expect the new auto-enrollment regime to persist

in the future.

Results. The model, with parameters estimated in the U.S., predicts reasonably well workers’ con-

tribution behavior in the context of the U.K. national auto-enrollment policy. The model matches the

change in the distribution of contribution rates; in particular it generates the fact that around one-third

of employees stayed at the 1% default contribution rate in the year following the policy implementation

(Figure 9).

Figure 9: Distribution of employees’ contribution rate before and after the U.K. national policy
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Notes: The empirical series correspond to workers observed two years before the auto-enrollment mandate became
binding at a given firm (left panel) and in the first survey year after the policy (right panel). Data source: U.K.
Annual Survey of Hours and Earnings waves 2010 to 2016.

7.2.2 Across-jobs evidence

Fact I of Section 2 shows that auto-enrollment causes workers to contribute less in their next employer’s

opt-in retirement savings plan. The model correctly predicts the magnitude of this effect.

Model exercise. I compare participation and contribution behavior under two model scenarios. In

the first scenario, each worker is auto-enrolled at 1% with a 1% fixed employer contribution in period texp

at job number 1. When moving to job number 2, the worker faces an expected zero default contribution

rate. In the second scenario, workers face a zero default contribution rate in jobs 1 and 2. In both

scenarios, workers expect the auto-enrollment policy to be adopted by all employers at the end of job 2.
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I compare the participation and contribution behavior under the two scenarios for workers in their first

year of tenure in job 2.

Results. The model predicts that auto-enrolling workers in job number 1 causes them to participate

9.5% less in their first year in job number 2. This prediction aligns well with the empirical estimate:

participation was 12.5% lower among the previously autoenrolled relative to other new hires in the same

firms (Table 1, column 1, panel A). The model also predicts a modest fall in the contribution rate of

0.1% of salary, which is of a similar magnitude to the empirical finding of a 0.3% of salary decline in the

contribution rate (Table 1, column 1, panel B)

8 Welfare Analysis and Optimal Defaults

In this section, I characterize the optimal enrollment policy under alternative assumptions about social

preferences and policy incidence.

8.1 Relationship to the previous literature

Only a handful of paper have studied the welfare impact of auto-enrollment policies (Carroll et al., 2009;

Bernheim et al., 2015; Goldin and Reck, 2018). This paper adds to this literature by considering, for the

first time (i) the lifetime welfare impact of auto-enrollment, and (ii) employers’ endogenous response to

the policy. A central question in this literature has been how to identify individuals’ normative preferences

in a setting where the axiom of revealed preferences often fails. For instance, a worker may contribute at

the savings default either because it is equal to her preferred contribution rate or because of inertia. There

are two approaches in the literature for assessing welfare in such settings. A first approach, formalized

by Bernheim and Rangel (2009), provides bounds on the welfare by inferring normative preferences from

a subset of decisions identified as welfare relevant (Bernheim et al., 2015, and Goldin and Reck, 2018).

Extending the Bernheim and Rangel framework to a dynamic setting is an interesting avenue for future

research, but lies beyond the scope of this paper.33 I adopt a second approach, similar to Carroll et al.

(2009), which consists of building a positive model of behavior that fully specifies the mapping from

decision to normative preferences.
33A particular challenge is that, in my dynamic setting, the default (i.e. the decision frame in the Bernheim and Rangel

framework) is endogenous to individuals’ past decisions. After the first period of employment, the default is equal to each
employees’ contribution choices in the previous period, and workers make their decisions taking into account the fact that their
choice today will determine the default they will face in the future.
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8.2 Optimal Default Options

I study the optimal selection of a default contribution rate from the perspective of a benevolent social

planner.34 This problem captures the choice governments face when adopting a national auto-enrollment

policy (as is the case in the U.K., New Zealand, and Turkey) or the decision U.S. states must make when

setting up a state-run auto-IRA program.35 In the context of 401(k) plans in the U.S., the selection of a

default contribution rate is left to employers. Nevertheless, the government can encourage employers to

adopt a specific default contribution rate and matching formula by granting qualifying plans an exemption

from 401(k) discrimination testing.36

8.2.1 Social preferences

The policymaker selects a default contribution rate dSP to be adopted by all employers. I allow social

preferences to differ from individual preferences along three dimensions. First, the social discount factor

δSP can be different from individuals’ estimated discount factor δ̂. For instance, the policymaker can

be more patient than individuals if δSP > δ̂. Second, I capture social preferences for redistribution

with exogenous Pareto weights ϕ (Saez, 2002). If ϕ is equal across individuals, the social planner has

no redistributive motive beyond declining marginal utility of consumption. Finally, the policymaker

considers that only a fraction π of the opt-out cost is welfare-relevant. π = 1 corresponds to the case

where the opt-out cost is fully normative (for instance, if making a decision involves real costs, such as

the fee of a financial adviser) and π = 0 if the opt-out cost is not welfare-relevant (for instance, if inertia

reflects employees’ mistakes from the policymaker’s perspective).37

The policymaker selects a default contribution rate dSP to maximize a social welfare function:

max
dSP∈S

{
V SP
0

(
dSP

)}
where V SP

(
dSP

)
is the “normative” expected lifetime utility from the perspective of period 0 (i.e.

34A different problem, studied by Bubb and Warren (2018), considers the selection of a default contribution rate by a profit-
maximizing employer. In their setting, employers exploit workers’ mistakes and set an inefficiently low default contribution
rate.

35To date, five U.S. states (Oregon, California, Connecticut, Illinois, and Maryland) have adopted legislation to extend auto-
enrollment to employees with no access to a 401(k) plan through state-run Automatic Individual Retirement Accounts.

36Currently, a minimum default contribution rate of 3% is required for a 401(k) plan to become a “Qualified Auto-enrollment
Contribution Arrangement” and earn safe harbor status from 401(k) non-discrimination testing (along with other conditions
on plan features and employer matching).

37Goldin and Reck (2018)discusses the empirical plausibility of different values of π.
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before any uncertainty is realized):38

V SP
(
dSP

)
= E0

[
A∑
t=1

(
δSP

)t(t−1∏
k=1

(1−mk)

)
ϕtut

(
ct − 1(st 6=dt)πk

)]

subject to individuals’ optimization defined in Section 3.9.

{ct, dct, lt} = argmax
dct,lt

Vt

(
~Xt

)

and subject to an aggregate employers’ budget constraint:39

Pf
(
dSP

)
+W

(
dSP

)
+Mtc

(
dSP

)
= Y (13)

where Pf
(
dSP

)
measures aggregate profits,W

(
dSP

)
aggregate wages andMtc

(
dSP

)
aggregate employer

matching contributions.

Welfare metric. I express changes in welfare relative to the opt-in regime in term of lifetime consumption-

equivalent γ (d):

1 + γ (d) =

(
V SP

(
dSP = d

)
V SP (dSP = 0)

) σ
1−σ

where σ is the elasticity of intertemporal substitution. The policymaker is indifferent between: (i) an

auto-enrollment policy with a default d and (ii) an opt-in regime with consumption multiplied by a factor

(1 + γ (d)) in every period of life and in every state of the world.

8.2.2 Incidence and means of balancing the budget

I assume that all employers share the same matching formula (initially, a 50% match for contributions

up to 6% of income with immediate vesting). Because more workers participate and contribute under

auto-enrollment, the policy has the potential to increase employers’ matching costs. In order to satisfy

employers’ aggregate budget constraint (13), I assume that employers respond to the policy in one of three

ways:

Reducing profits. The first scenario assumes that the policy’s incidence falls completely on employ-

ers, who reduce their profits to cover higher matching costs. This reduction in profits is assumed to

have no direct effect on social welfare and no effect on the interest rate (which is calibrated to match the
38Note that because preferences are homogeneous, lifetime utility is ex-ante identical across individuals.
39Note that since employers are ex-ante identical in this set-up, the aggregate employers’ budget constraint is equal, in expec-

tations, to each individual employer’s budget constraint.
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long-term yield on government bonds). This assumption is implicit in previous characterizations of an op-

timal default contribution rate that did not feature employers’ budget constraints (Bernheim et al., 2015;

Goldin and Reck, 2018). A drawback of this specification is that the direct effect of auto-enrollment on

welfare cannot be disentangled from the effect of employers spending more on matching, which increases

workers’ total compensation.

An alternative scenario assumes that the incidence of the policy falls fully on workers. I explore two

possible specifications:

Reducing the match rate. Butrica and Karamcheva (2012) document that, in the cross-section, auto-

enrollment is correlated with a less generous matching formula, and that total retirement plan costs and

total compensation are not different between firms with and without auto-enrollment. Motivated by this

evidence, I assume that employers adjust the match ratematche to satisfy the aggregate budget constraint

(13). The match rate adjusts to keep employers’ total matching expenditure constant under alternative

default contribution rates.

Reducing wages. Another possibility is that employers reduce wages to offset higher matching costs.

I assume that all wages are reduced by the same proportional factor in order to satisfy employers’ aggregate

budget constraint (13). Employers adjust the wage level to keep the total compensation bill W
(
dSP

)
+

Mtc
(
dSP

)
constant.

8.3 Optimal Policies under Alternative Specifications of Social Preferences

I solve for the optimal default contribution rate under three specifications of social preferences: a utilitar-

ian, inequality-averse, and paternalistic policymaker. In each case, I allow for the opt-out cost to be either

fully normative (i.e. π = 1) or welfare irrelevant (i.e. π = 0). Optimal policies, as summarized in table 7,

are identical under both values of π.

8.3.1 A utilitarian policymaker prefers the opt-in regime to auto-enrollment

I consider first the case of a utilitarian policymaker who shares the same discount rate as individuals

(δSP = δ̂) and does not have redistributive preferences beyond declining marginal utility (ϕt = 1).

The utilitarian policymaker always prefers an opt-in regime to auto-enrollment, even when the policy

incidence is fully on employers (Table 7). The matching and tax incentives for retirement saving cause

individuals to consume too much in retirement relative to the ideal consumption plan implied by their

discount factor δ̂. Hence, auto-enrollment, by inducing people to save even more for retirement, tends to

reduce utilitarian welfare (Figure 10 panel A). This negative auto-enrollment effect on welfare is largest if
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employers reduce wages to compensate for higher matching contribution costs, because, from the perspec-

tive of utilitarian welfare, wages are always preferred to matching contributions (Figure 10 panel C).40 If

the opt-out cost is not welfare-relevant (π = 0), an auto-enrollment default at the maximum contribution

rate (15%) is almost as good as the opt-in regime (Figure 10 panel A). The intuition for this result is that

a very high default induces more workers to incur the opt-out cost and make an active decision (what

Carroll et al. (2009) refer to as an “offset default”).

Figure 10: Welfare effect of alternative defaults - Utilitarian policymaker

-0.6%

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.6%

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.6%

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Panel A : profit adjustment Panel B : match adjustment Panel C: wage adjustment

default contribution rate dSP

Ch
an

ge
 in

 so
ci

al
 w

el
fa

re
 in

 c
on

su
m

pt
io

n-
eq

ui
va

le
nt

 

default contribution rate dSP default contribution rate dSP

welfare-relevant opt-out cost (π=1) welfare-irrelevant cost (π=0)

Notes: Each series correspond to social welfare under alternative default contribution rates adopted by all employers
over a lifetime. Welfare is expressed in consumption-equivalent variation relative to an opt-in regime (i.e. dSP = 0).
Social preferences are assumed to be equal to individuals’ preferences (δSP = δ̂ and ϕt = 1).

The average auto-enrollment effect on welfare masks important heterogeneity across the income distri-

bution. As shown in figure 11, even absent any paternalistic motive, the policy has a significant positive

effect at the bottom: a 6% auto-enrollment default increases welfare by 0.3% in lifetime consumption-

equivalent at the bottom of the lifetime income distribution when the policy incidence is fully on em-

ployers and the opt-out cost is fully welfare-relevant. Because the opt-out cost represents a larger share of

earnings for low-income individuals, they are more likely to forgo the benefits of retirement saving absent

auto-enrollment.
40The reduction in utilitarian welfare from adopting a 6% default is nearly 50% larger if employers reduce wages instead of

lowering the match rate.
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Figure 11: Heterogeneity in auto-enrollment’s effect on lifetime welfare - Utilitarian policymaker
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Notes: Each bar corresponds to the difference between lifetime utility under an auto-enrollment policy at 6% adopted
by all employers and an opt-in regime for individuals in each decile of lifetime earnings. Changes are expressed in
lifetime consumption-equivalent. The policy incidence is fully on employers, and social preferences are assumed to
be equal to individuals’ preferences (δSP = δ̂ and ϕt = 1) with a fully welfare-relevant opt-out cost (π = 1).

8.3.2 An inequality-averse policymaker prefers auto-enrollment

In what follows, I show that a policymaker who puts more weight on low-income individuals will select

a default contribution rate near the employer matching threshold, even if the policy incidence falls fully

on workers.

Pareto weights. I adopt a functional form similar to Saez (2002) with Pareto weights equal to

ϕt = ȳ (θt, at, empt)
−ν

where y is the income under the opt-in regime of an individual at age at, with labor productivity θt,

and employment status empt. If ν = 0 the social planner has no redistributive motive beyond declining

marginal utility of consumption, while ν > 0 captures the degree of inequality aversion. These Pareto

weights are treated as exogenous and do not vary across model counterfactuals. Following Saez (2002), I

set ν = 1. This specification creates a motive for both intra-generational redistribution (from high to low

labor productivity types θ) and inter-generational redistribution (from the relatively rich middle aged to

the relatively poor young and elderly).
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Optimal policy. When the incidence of the policy falls on employers (through a reduction in prof-

its) the optimal default selected by an inequality averse policymaker is equal to the employer matching

threshold (6% of income). However, when the incidence of the policy falls on workers, the policymaker

must trade off (i) improving the welfare of low-income workers with a higher auto-enrollment default

and (ii) reducing the resources available to higher income individuals. As shown in Figure 12, a default

contribution rate of 5% of income balances these two motives when the policymaker is inequality averse.

Figure 12: Welfare effect of alternative defaults - Inequality-averse policymaker
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Notes: Each series correspond to social welfare under alternative default contribution rates adopted by all employers
over a lifetime. Welfare is expressed in consumption-equivalent variation relative to an opt-in regime (i.e. dSP = 0).
Social and individual time preferences are identical (δSP = δ̂). Low-income individuals receive higher Pareto
weights ϕt, and these weights are kept constant across policy counterfactuals.

8.3.3 A paternalistic policymaker sets the default at the employer matching threshold

Many countries have instituted forced savings programs (for instance, Social Security contributions in the

U.S) and tax incentives for private retirement savings contributions. The existence of these programs and

incentives indicate that policymakers may value retirement consumption more than implied by individ-

uals’ revealed preferences. To capture this idea, I consider the case of a paternalistic policymaker who

is more patient than individuals (δSP = 1) but does not have a redistributive motive beyond declining

marginal utility (ϕt = 1). The paternalistic policymaker selects a default contribution rate equal to the

threshold on employer matching.

There are multiple reasons why the policymaker may discount the future less than individuals. First,

if the policymaker cannot commit to not helping the elderly living in poverty, individuals may rationally

undersave for retirement. In such setting, known in the literature as the Samaritan’s dilemma, the optimal
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policy solves the problem of a committed planner who discounts the future less than the agents (Sleet and

Yeltekin, 2006). Second, if people suffer from behavioral biases or have time-inconsistent preferences, a pa-

ternalistic policymaker can correct for individuals’ mistakes with more future-oriented policies (Laibson,

1997). Finally, a lower social discount rate may be desirable on normative grounds. This argument goes

back to Ramsey (1928), who contended that discounting the future was “ethically indefensible”. Caplin

and Leahy (2004) argue that the appeal of the principle of revealed preferences may not extend to dynamic

settings, and that in most cases, policymakers should be more patient than individuals.

Optimal defaults. An auto-enrollment default at the match threshold (6% of income) is always

preferred by the paternalistic policymaker (Figure 13). Because the paternalistic policymaker values re-

tirement savings more than individuals, he selects the default which maximizes retirement wealth accu-

mulation. A default above the matching threshold reduces asset accumulation: contributions above the

threshold are viewed as undesirable by many workers (as they do not earn a matching benefit) and induce

a larger fraction of opt-outs. In contrast to the utilitarian case, reducing wages to balance employers’

budget constraint is (weakly) preferred to reducing the match rate. This difference arises because, from

the perspective of the paternalistic policymaker, allocating more funds to matching incentives and fewer

funds to wages can improve welfare by shifting consumption toward the future.

Figure 13: Welfare effect of alternative defaults - Paternalistic policymaker
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Notes: Each series correspond to social welfare under alternative default contribution rates adopted by all employers
over a lifetime. Welfare is expressed in consumption-equivalent variation relative to an opt-in regime (i.e. dSP = 0).
Social preferences do not discount the future (δSP = 1), and there is no redistributive motive beyond declining
marginal utility (ϕt = 1).
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Table 7: Summary table of the optimal default under alternative specifications
Policy incidence

Employers profits Matching formula Wages adjustment
So

ci
al

pr
ef
er
en

ce
s Utilitarian Opt-in Opt-in Opt-in

Inequality averse AE 6% AE 5% AE 5%

Paternalistic AE 6% AE 6% AE 6%

Notes: Each cell corresponds to the optimal policy under an alternative assumption about social preferences and
policy incidence. Opt-in corresponds to a zero default contribution rate dSP = 0, and AE corresponds to a positive
default contribution rate adopted by all employers over a lifetime. Optimal policies are identical whether the opt-out
cost is fully normative (π = 1) or welfare-irrelevant (π = 0).

9 Conclusion

A growing literature has documented, in a variety of settings, that individuals stick with the default

option and make infrequent switching decisions.41 This paper has shown, in the context of contributions

to retirement savings plans, the importance of studying decision-making inertia in a fully dynamic setting.

When individuals can compensate for their inaction with other actions in the future, small opt-out costs

generate large inertia and the observed short-run effects may overstate the long-term consequences of

inaction. These insights are likely to extend, perhaps to different degrees, to other settings where large opt-

out costs have been estimated. In similar settings, my results suggest that freedom of choice is preserved

not only because individuals can offset the effect of a nudge by opting out right away, but also because

they can take corrective actions in the future. Therefore, the appeal of what Thaler and Sunstein (2003)

call “libertarian paternalism” is particularly strong. It is instructive to contrast my setting with other

domains, such as healthcare plan or school choice, where future actions cannot easily compensate for

present inertia. In these settings, opt-out costs estimates are likely to remain large. Because there is little

difference between a nudge and a hard mandate when opt-out costs are very large, the appeal of libertarian

paternalism is limited in these other settings and more traditional policy tools—such as prohibitions and

mandates—may be preferable.
41For instance, in the retirement savings context, significant inertia and large opt-out costs have been estimated for switching

between retirement funds (Illanes, 2016; Dahlquist et al., 2018), or between a defined benefit and defined contribution plan
(Dobrescu et al., 2018).
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A Parameters Definition

Table 8 summarizes all the model parameters introduced in the paper (excluding the appendices).

Table 8: Summary table of the model’s parameters

Preference Parameters Assets
δ Discount factor Rdc Rate of return on DC wealth
σ Elasticity of intertemporal substitution Rliq ( ) Rate of return on liquid assets
k Opt-out cost 1 + r Interest rate on positive asset holdings

State variables 1 + rcc Interest rate on unsecured debt
Xt Vector of all state variables la Borrowing limit
a Age Defined Contribution Account

empt Employment status E ( ) Distribution of DC account types
tent Tenure ece ( ) Employer DC contribution
e Employer DC plan type fixede Fixed employer contribution
θ Labor productivity matche Employer matching rate
ae Average lifetime earnings cape Threshold on employer matching
l Liquid assets Υe ( ) Vesting risk-adjustment
dc DC wealth stock Labor Market
d Default contribution rate πJJ ( ) Job-to-job transition probability

F ( ) Joint distribution of θ, emp, e πEU ( ) Unemployment transition probability
Choices πUE ( ) Out-of-unemployment transition probability

c Consumption {δi}3i=0 Deterministic component of earnings
s DC contribution rate w Labor earnings

draw DC withdrawal rate ρ Autocorrelation in earnings shocks
Utility ξ Earnings innovation if continuously employed

ua ( ) Utility function σ2
ξ1

Variance of the first earnings innovation
V ( ) Value function σ2

ξ Variance of subsequent innovations
V S ( ) Value function cdt. on DC contrib. s ζ Earnings innovation after job-to-job transition

Demographics µJJ Avg. wage gain after a job-to-job transition
A Maximum age ςt Earnings innovation out of unemployment
AR Retirement age µUE Avg. wage loss out of unemployment
ma Mortality risk ι Measurement error in earnings
na Equivalence scale σ2

ι Variance of measurement error
Welfare analysis η Earnings innovation plus measurement error

V SP ( ) Social welfare function Tax and benefit system
γ ( ) Consumption-equivalent variation taxi ( ) Tax on income
δSP Social discount factor τk Tax on capital returns
π Degree to which k is welfare-relevant limita Tax limit on DC contributions
ϕt Pareto weights pena Tax penalty of early DC withdrawals
ν Degree of inequality aversion ui ( ) Unemployment insurance benefit
ȳ ( ) Avg. individual income under opt-in ss ( ) Public pension income
Y Employers’ aggregate budget constraint

Pf ( ) Aggregate employers’ profits
W ( ) Aggregate wages
Mtc ( ) Agg. employers’ matching contributions
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B Model Extensions

B.1 Present-biased preferences

Several empirical studies have documented that measures of time-inconsistency correlate with the propen-

sity to stay at the default option in retirement savings plans (Blumenstock et al., 2018; Brown et al., 2016;

Brown and Previtero, 2016). Under present-biased preferences workers procrastinate on changing their

contribution rate because the opt-out cost is paid in the present while the benefits of retirement saving are

in the future (O’Donoghue and Rabin, 1998; Carroll et al., 2009; DellaVigna 2009 and 2018). I compare

two different specifications of present-biased preferences, and do not find support for one in which present

bias directly affect contributions.

A first view is that contribution choices only reflect the regular discount factor δ because contribution

changes are implemented by employers with a delay—usually at the beginning of the next pay period. As

noted by Carroll et al. (2009), this implies that a contribution rate choice serves as a commitment to save

in the future, starting from the next paycheck. Under this view, present bias is similar to a higher opt-

out cost: it reduces the probability of switching but does not affect the contribution choice conditional

on making an active decision. In the absence of a source of variation in my data that would allow me

to separately identify this form of present bias from opt-out costs, I interpret my baseline estimates as

capturing the combined effect of present bias and other forms of opt-out costs.42

A second view is that present bias directly affects contribution preferences. Workers choose low

contribution rates because they do not want to reduce their consumption in the present and believe

(mistakenly) that they will contribute more later. It is important to explore this possibility because, unlike

the first view, the welfare implications may be substantially different from the baseline model. Under this

specification of present bias, contribution decisions do not reveal workers long-term preferences and are

systematically too low. This creates a motive for the social planner to nudge workers into choosing a

higher contribution rate. I explore the role of present bias in the model by introducing an additional

discount factor β ≤ 1 between the present and all future periods. I assume that workers are naive about

their future selves’ present bias. The objective function for a present biased worker V PB is given by

equation (14) where Vt+1 is the value function in the baseline exponential discounting case.

V PB
t (Xt) = max

st∈S,lt+1

ua
(
ct − 1(st 6=dt).k

)
+ βδ (1−ma)

∫
Vt+1 (Xt+1) dF (θt, empt, et) (14)

I consider two values of the short-term discount factor: (i) β = 0.504 which is the value estimated
42One way to to identify present bias separately from other forms of contribution switching costs would be to use data on

both 401(k) contributions and liquid asset holdings. Beshears et al. (2018) study a setting with such linked data.
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by Laibson et al. (2017) in a lifecycle setting, and (ii) β = 0.80 which is in the high-end of short-term

discount factor estimates. I re-estimate the model’s three other preference parameters following the same

procedure outlined in section 4. Results are reported in Table 9.

Table 9: Preference parameter estimates- Model extension
...........(1)........... ...........(2)........... ...........(3)...........
Baseline model Present bias I Present bias II

β = 1 β = 0.800 β = 0.504

k $ 254 $ 269 $ 430
(11) (9) (13)

δ 0.987 0.989 0.999
(0.000) (0.000) (0.000)

σ 0.455 0.454 0.625
(0.013) (0.014) (0.017)

χ2 stat. 586 607 400
(df) 41 41 41

Notes: Column 1 reproduce baseline estimates from Table 4 Column 1. Column 2 presents parameters estimates
with a low degree of present bias β = 0.8. Column 3 presents parameters estimated with a higher degree of
present bias β = 0.504, which corresponds to the value estimated by Laibson et al. (2017). In all columns the
weighting matrix is the inverse of the diagonal of the estimated variance-covariance matrix of the second-stage
moment conditions. The last row shows results from the χ2 overidentification test with associated degrees of
freedom. Standard errors are in parentheses. Data source: administrative 401(k) records from 34 U.S. firms.

Surprisingly, introducing this form of present-biased preferences leads to a higher estimate of the opt-

out cost: $ 430 for β = 0.504 and $ 269 for β = 0.80. To match the fact that workers contribute to the

plan despite their present bias requires a higher long-term discount factor.43 While adding a short-term

discount factor β implies that workers value less the benefits of retirement savings, a higher estimate of the

long-term discount factor δ implies that they value these benefits more. The second channel dominates

and, because many workers value the retirement period more under this parametrization of the model, the

opt-out cost needed to rationalize the observed inertia at the savings default is higher. To build intuition

for this result, consider the case of a 25-year-old worker who retires at age 65 (after 160 quarters). She

discounts utility at retirement by a factor β (δ)160. While a lower value of β implies that she values the

benefits of retirement saving (including the employer match) less relative to the cost of opting out in the

present, a small increase in the value of δ can reverse this result.44

In addition, a higher long-term discount factor of δ causes the model not to match well the observed
43I estimate δ = 0.999 (or 0.996 annually) for β = 0.504 and δ = 0.989 (or 0.957 annually) which is higher than my baseline

estimate of δ = 0.987 (or 0.949 annually)
44My estimates imply that β (δ)160 is lower in the baseline model than in either of the two parametrizations of present bias.
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heterogeneity in default behavior by age. When the estimate of δ is close to unity, older worker are more

likely to stay at the default option than observed in the data (Figure 14, left panel).

Figure 14: Heterogeneity in default effects by age and income - Present-biased preferences
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Notes: Each point corresponds to the coefficients of the interaction terms of autoenrollment status (based on a
worker date of hire) with income and age group dummies, estimated according to equation (12). The dependent
variable is a dummy equal to 1 if, conditional on participating, a worker observed in her first year of tenure con-
tributes exactly 3% (the auto-enrollment default contribution rate). The area between the dashed lines corresponds
to the 95% confidence intervals of the empirical coefficients. Data source: administrative 401(k) records from 34
U.S. firms.

B.2 Proportional Opt-Out Costs

As an extension to the baseline model, I consider the case where the opt-out cost is proportional to each

workers’ labor earnings. For instance, if changing the DC contribution rate takes time, this specification

captures the fact that the opportunity cost of time is higher for highly-paid workers. I introduce an

opt-out cost k̃ that is proportional to earnings:

ua

(
ct − 1(st 6=dt)k̃.wt

)
I fix time preferences to their estimated value (δ = 0.987 and σ = 0.455), and estimate k̃ to be equal to

3.16% of quarterly income (i.e. equivalent to $ 292 at the average earnings level). Under this specification,

high income workers are more likely to stay at the default because the opt-out cost is now larger for them

(Figure 15, right panel). Under this parametrization, the model fails to match the empirical heterogeneity

in treatment effects across income groups. The relationship between income and the propensity to stay

at the default is even flatter under the additional assumption that Social Security offers and tax formulas
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are flat. I set the Social Security replacement equal to 50% for everyone, and the income tax rate at 15%.

Results are reported in Figure 15.

Figure 15: Heterogeneity in default effects by age and income - Proportional opt-out cost
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Notes: Each point corresponds to the coefficients of the interaction terms of autoenrollment status (based on a
worker date of hire) with income and age group dummies, estimated according to equation (12). The dependent
variable is a dummy equal to 1 if, conditional on participating, a worker observed in her first year of tenure con-
tributes exactly 3% (the auto-enrollment default contribution rate). The area between the dashed lines corresponds
to the 95% confidence intervals of the empirical coefficients. Data source: administrative 401(k) records from 34
U.S. firms.

C Additional Model Counterfactuals

C.1 Wealth Accumulation over the Lifecycle

While the model is estimated using 401(k) data only, my baseline estimates are also consistent with the

evolution of total wealth accumulation over the lifecycle in the 2016 Survey of Consumer Finances (SCF).

Because wealth measures in the SCF are the household level, they are not directly comparable to the model

predictions which are at the individual level. Instead, I compare the evolution of the wealth to income

ratios over the lifecycle. Total wealth (or total net worth in the SCF) is defined as the sum of all assets

net of all outstanding debts but excluding the expected value of future defined benefit and social security

income. For comparability with the estimation sample, I restrict the SCF sample to households where

either the head or spouse has any type of account-based pension plan on a current job. The evolution

(and heterogeneity) in the observed wealth to wage income ratios are reported in Figure 16 alongside

the model prediction. Overall the model predicts well the evolution of wealth accumulation over the

lifecycle, but tends to underestimate wealth accumulation at the top. This result is not surprising given
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that, as show by De Nardi and Fella (2017), standard lifecycle models cannot generate the right tail of the

wealth distribution without introducing nonhomothetic preferences for bequests, entrepreneurship, and

medical-expense risk.

Figure 16: Ratio of net wealth to earnings by age: data vs. model
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Notes: The data series (straight lines) plot the ratio of total wealth to wage income by age of the head of household.
Total wealth corresponds to the sum of all assets net of all outstanding debt. The sample is restricted households
where either the head or spouse has any type of account-based pension plan on a current job. The model series
(dashed lines) corresponds to model simulation under an opt-in regime in all jobs. Total wealth in the model series
corresponds to the sum of retirement and liquid assets net of unsecured debt liabilities. Data: Survey of Consumer
Finances 2016.

C.2 Alternative Default Contribution Rates

I use the estimated model to predict the effect on lifetime savings of alternative auto-enrollment default

contribution rates adopted by all employers: 3%, 6%, and 10% of income. The simulation exercise is

similar to the one described in Section 6. For each auto-enrollment default I consider three different

assumption about the policy incidence (see Section 8.2.2 for details). Across all counterfactuals, the effect

of auto-enrollment on wealth at retirement are largest (in relative terms) for low income workers and

negligible for the right tail of the income distribution. While typical autoenrollment policies at 3% of

income have a negligible effect at the median, a higher default contribution rate of 6% or 10% of income

can raise median wealth at 65 by up to 5 percentage points.
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Figure 17: The effect of auto-enrollment on total wealth at age 65
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Notes: Each bar corresponds to the model-predicted difference between the sum of retirement and liquid wealth at
age 65 under an auto-enrollment policy adopted by all employers versus an opt-in regime adopted by all employers.
Each of the three series assumes a different mean of balancing employers’ budget. Changes are expressed as a fraction
of wealth at age 65 under the opt-in regime (panel A) or in 2006 dollars (panel B).
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D U.S. Calibration - Additional Details

Labor market. I use the Survey of Income and Programs and Participation (SIPP) to estimate of the

wage earnings process and labor market transitions probabilities. Each individual in the panel reports

data on income, employment status and his or her employer identity for each week. I use the 1996

panel of the SIPP which contains data from December 1995 to February 2000 and aggregate the data

at quarterly frequency. I focus on an individual’s primary job (defined as the job where he worked the

most hours). I restrict the sample to individuals aged 22 to 65 years old, and exclude full-time students

and business owners. Following Borella et al. (2018), I use data on both male and female respondents. I

use the publicly available replication files provided by Menzio et al. (2016) to build the SIPP panel and

use a broadly similar definition of labor market transition variables. I assign employment status based

on individuals’ responses in the first week of each quarter. An individual is classified as employed if she

reports having a job. I record a job-to-job transition if the identity of an individual’s employer is different

in two successive quarters. I record a job separation if an individual is employed in the beginning of

a quarter, and not employed in the beginning of the subsequent quarter. Job separations include early

retirement decisions, before the age of 65.

I estimate equations (9), (10), and (11) using a linear probability regression. Estimates for the age

component of labor market transitions are reported in Figure 18. Estimates for the tenure component are

reported in Figure 19.
Figure 18: Age component of quarterly labor market transitions
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Notes: The graphed series plot the predicted age profile of labor market transitions implied the a linear probability
regression where the dependent variable is dummy for labor market transitions. The series are constructed using
the coefficients of the fifth-order polynomial in age in equations (11) and (9).
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Figure 19: Tenure component of quarterly labor market transitions
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Notes: The graphed series show coefficients from a linear probability regression where the dependent variable is a
dummy for labor market transitions. The coefficients correspond to the tenure dummies in equations (11) and (9).

Equivalence scale. Using PSID data from 1984 to 2005, Lusardi et al. (2017) estimate z (jt, kt) =

(jt + 0.7kt)
0.75where jt and kt are, respectively, the average number of adults and children (under 18

years old) in a household with a head of age t. They normalize this measure by z (2, 1)—the composition

of a household with 2 adults and 1 child—to get the equivalence scale at age t equal to nt = z(jt,kt)
z(2,1) . To

estimate nt I use publicly available replication files from Lusardi et al. (2017) and aggregate the data across

education groups.

Vesting schedule. A vesting schedule vste (ten) determines the percentage of employer contributions

that an employee keeps if she separates at a given tenure level. For instance, under a cliff vesting schedule,

vste is equal to zero before the end of the vesting period and one afterward. Modeling the vesting schedule

explicitly would introduce an additional continuous state variable to the dynamic problem: the amount

of non-vested of DC wealth. Instead, I adjust employer contributions by a factor Υe (t, ten) proportional

to the risk of losing unvested employer contributions. The adjustment factor Υe (t, ten) is given in

equation (15). It depends on both the cumulative job-separation probability and the vesting schedule. It is

smaller than one and increasing in tenure before the end of the vesting period, and equal to one afterward.

Importantly, this specification captures the fact that vesting matters more for employees who—based on

their age and tenure—are more likely to separate from their employer.

Υe (t, ten) = 1−
TR−t∑
j=0

(
j−1∏
k=1

(
1− πEUt+k,ten+k − πJJt+k,ten+k

)) (
πEUt+j,ten+j + πJJt+j,ten+j

)
(1− vste (ten+ j))

(15)
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Employer contributions adjusted for ’vesting risk’ ( ẽce) are given by equation (16).

ẽce,t (τt, tent) = Υe (t, tent)× ece (τt, tent) (16)

On average, in the estimation sample of 34 U.S. 401(k) plans, 52% of matching contribution are vested

immediately and this share increases over tenure. The average vested share reaches 70% by the end of the

second year of tenure. I assume that all matching contributions are fully vested starting from the 9th

quarter of tenure.

Unemployment benefits. Unemployment insurance provides a constant replacement rate ω of labor

earnings implied by the labor productivity level in the last period of employment. Labor productivity θt

stays constant during an unemployment spell. I set ω = 0.40, which is the average replacement rate across

all U.S. states (U.S. Department of Labor, 2018). In the U.S. unemployment benefits may be reduced

by a claimant’s retirement income. The Unemployment Compensation Amendments of 1976 require

that all retirement income be offset against unemployment compensation. There are differences in how

states implement the offset and generally, for withdrawals from a 401(k), only the amount contributed by

the employer offsets unemployment benefits (see Franco (2004) for differences across U.S. states).45 For

simplicity, I assume that the employer contribution portion of an early withdrawal is always equal to the

employer match rate. This simplifying assumption is valid assuming participants contribute below the

matching threshold and contributions are fully vested. Adjusted unemployment benefits for an individual

unemployed since period t− x are given by:

uit = max {0 ; ωwt (θt−x)− drawtdct ×matche}

Income taxation. Taxable income is defined as the sum of labor earnings, social security and unem-

ployment benefits, DC withdrawals, less contributions to the DC account:

ytaxt =


(1− st)wt if empt ∈ {E, JJ}

uit + drawtdct if empt = U

ss (aeAret) + drawtdct if empt = Ret

Individuals’ income tax liability is calculated according to the federal income tax schedule of 2006 (the

first year of data and the base year for the calibration) for an individual filling as single and claiming the
45For instance, in New Jersey 50% of retirement income, including “benefits paid in a lump sum such as 401(k)”, is substracted

from the unemployment benefit if both the claimant and the base-period employer contributed to the pension plan. Source:
https://nj.gov/labor/ui/content/faq.html
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standard deduction. The tax formula has 5 annual income brackets {κ̃τi }
5
i=1 = {$ 5, 150 ; $ 7, 550 ; $ 30, 650 ; $ 74, 200 ; $ 154, 800}.46

Quarterly tax brackets are defined as: κτi = 1
4 κ̃

τ
i . The quarterly income tax liability is equal to:

taxit =



0 if ytax ≤ κτ1

0.10 (ytax − κτ1) if κτ2 ≥ ytax > κτ1

0.10 (κτ2 − κτ1) + 0.15 (ytax − κτ2) if κτ3 ≥ ytax > κτ2

0.10 (κτ2 − κτ1) + 0.15 (κτ3 − κτ2) + 0.25 (ytax − κτ3) if κτ4 ≥ ytax > κτ3

0.10 (κτ2 − κτ1) + 0.15 (κτ3 − κτ2) + 0.25 (κτ4 − κτ3) + 0.28 (ytax − κτ4) if κτ5 ≥ ytax > κτ4

0.10 (κτ2 − κτ1) + 0.15 (κτ3 − κτ2) + 0.25 (κτ4 − κτ3) + 0.28 (κτ5 − κτ4) + 0.33 (ytax − κτ5) if ytax > κτ5

Public pension. Public pension benefits are computed according the 2006 Social Security formula

at the full retirement age (ss), with the income floor guaranteed by the Supplemental Security Income

program (with a monthly benefit si = $603). Quarterly public pension benefits are equal to:

ss (aeAret) = 3×max {si ; s̃s (aeAret)}

where s̃s, the monthly social security benefit, is increasing in average lifetime earnings aeAret up to a

maximum monthly benefit:

s̃s =


0.90× 1

3aeAret if 1
3aeAret ≤ $656

0.90× $656 + 0.32× ( 1
3aeAret − $656) if $3, 955 > 1

3aeAret > $655

min
{

0.90× $656 + 0.32× $3, 299 +
(
0.15× 1

3aeAret − $3, 299
)

; $2, 053
}

if 1
3aeAret > $3, 955

E U.K. National Autoenrollment Policy and Calibration

E.1 U.K. national autoenrollment policy

The U.K. Pension Act of 2008 requires employers to automatically enroll their employees (with the option

to opt-out) into a workplace pension scheme. The law sets the minimum employee default contribution

rate at 1% of income and the minimum employer contribution at 1%. Each employer was given a staging

date based on its number of employees. The staging dates for each employer size are reported in Table 10.

Employers were required to enroll all employees aged between 22 and the stage pension age in a workplace

pension plan by the staging date.47 The auto-enrollment requirement applies to both new hires and the
46Note that the first bracket correspond to the standard deduction amount in 2006.
47Employers could apply to postpone the implementation of auto-enrollment by up to 3 months after the staging date. Since

I do not observe whether a firm applied to use postponement, I treat the staging date as binding.
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non-participating seasoned employees. I refer to Cribb and Emmerson (2016) for more details on the

policy and its rollout.

Table 10: Auto-enrollment staging dates by employer size
Employer Auto-enrollment Employer Auto-enrollment Employer Auto-enrollment

size staging date size staging date size staging date

120,000+ October 1, 2012 2,000+ August 1, 2013 61+ August 1, 2014
50,000+ November 1, 2012 1,250+ September 1, 2013 60+ October 1, 2014
30,000+ January 1, 2013 800+ October 1, 2013 59+ November 1, 2014
20,000+ February 1, 2013 500+ November 1, 2013 58+ January 1, 2015
10,000+ March 1, 2013 350+ January 1, 2014 54+ March 1, 2015
6,000+ April 1, 2013 250+ February 1, 2014 50+ April 1, 2015
4,100+ May 1, 2013 160+ April 1, 2014 40+ August 1, 2015
4,000+ June 1, 2013 90+ May 1, 2014 30+ October 1, 2015
3,000+ July 1, 2013 62+ July 1, 2014

Source: Cribb and Emmerson (2016).

E.2 U.K. calibration

In what follows I detail the parametrization of the model in the U.K. validation exercise presented in

Section 7.2. Other parameters are set equal to their value in the U.S. calibration.

Employer matching formulas. ASHE does not collect data on each employer’s matching formula.48

I use data on employee and employer contributions prior to the auto-enrollment rollout to back out

each employer’s matching formula. The distribution of contribution rates often features bunching at the

threshold on employer matching. I hypothesize that the modal (positive) contribution rate in a given firm

is the threshold on employer matching. I test this hypothesis in Table 11 by regressing employer contribu-

tions on employee contributions above and below the modal contributions. Columns 1 and 2 show that,

up to the modal employee contribution, each percentage point increase in contributions raises the em-

ployer contribution by half a percentage point. Columns 1 and 3 show that employee contributions above

the modal contribution rate do not lead to significantly higher employer contributions. These results are

consistent with employers offering a 50% match on contributions up to the modal contribution.

In the calibration of the model to the U.K. environment, I group employers into 5 types based on

their employer contribution formula. Motivated by the evidence in Table 11, I set the match rate equal

to 50% for all employers with immediate vesting. I assume that employers have one of five different

matching thresholds (cape), based on the five most common modal contribution rates observed in the
48I am not aware of any representative evidence on the distribution of employer matching formulas in the U.K.
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data (and covering more than 80% of employees). The calibrated probability distribution of employer

types is reported in Table 12 and reflects the empirical distribution of modal employee contributions.

U.K. income process. I estimate the income process using earnings data for U.K. private sector

workers aged 22 to 65 using ASHE data between 1997 and 2016. I use the same two step procedure used

to estimate the income process for U.S. workers. Estimation results are reported in Table 13. I adjust the

estimate for the fact that AHSE is collected at annual frequency while the model is simulated at quarterly

frequency.49

Table 11: Relationship between employer and employee retirement contributions in the U.K.

Employer contribution in % of pay
(1) (2) (3)

.........Full........ Employee contrib. Employee contrib.
sample ≤ modal contrib. > modal contrib.

Employee contribution rate

×dummy (contrib.≤modal) 0.500*** 0.504***
(0.14) (0.14)

×dummy (contrib.>modal) 0.229 0.155
(0.158) (0.123)

Modal contribution rate in the firm

×dummy (contrib.≤modal) 0.471 0.499
(0.306) (0.333)

×dummy (contrib.>modal) 0.923** 0.812**
(0.408) (0.407)

R-squared 0.146 0.143 0.111
Observations 21771 17856 3915

* p<0.10, ** p<0.05, *** p<0.01

Notes: The outcome variable is the employer retirement contribution amount as a percentage of pensionable pay.
The modal (positive) employee contribution is computed separately for each employer. I restrict the sample to firms
with at least 50 observations in the three years prior to the auto-enrollment staging date. Data source: ASHE 2006
to 2016.

49Given the auto-correlation ( ρ̂) and variance (σ̂2
ξ ) estimated using annual data, the quarterly values are given by ρ = ρ̂

1
4 and

σ2
ξ = 1

(1+ρ2+ρ4+ρ6)
σ̂2
ξ
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Table 12: Probability distribution of employer types

Threshold on matching (cape)
2% 3% 4% 5% 6%

Prob. 0.12 0.18 0.15 0.25 0.30

Notes: This table shows the probability distribution of match thresholds in the U.K. calibration of the model. This
distribution is inferred from the empirical distribution of modal contribution rates in the three years prior to the
auto-enrollment staging date. Data source: ASHE 2006 to 2016.

Table 13: U.K. earnings process estimates

Age component Stochastic component of earnings
δ0 δ1 δ2 δ3 ρ̂ σ2ξ1 σ̂2ξ σ2m

5.306 0.255 −0.0043 0.0000219 0.949 0.2447 0.0232 0.2442

Notes: Annual earnings process estimated using a two-step minimum distance estimator on a panel of workers
continuously employed in the same job. Data source: ASHE 1997 to 2016.

Early withdrawals. Early withdrawals from a DC account are not allowed in the U.K. Thus, I impose

a 100% tax penalty on early withdrawals pena = 1.

Income taxation. Individuals’ income tax liability is calculated according to the U.K. income tax

schedule of 2006 for an individual claiming the personal allowance for singles. The quarterly income tax

liability is equal to:

taxit =


0 if 4ytax ≤ £4, 895

0.22
(
ytax − 4,895

4

)
if £32, 400 ≥ 4ytax > £4, 895

0.22
(
32,400−4,895

4

)
+ 0.40

(
ytax − 32,400

4

)
if 4ytax > £32, 400

Public pension. The U.K. State Pension provides public pension benefits similar to Social Security in

the U.S. The relationship between average lifetime earnings and public pension entitlements is modeled

to match the evidence in Figure 1 of O’Dea (2018), expressed in 2006 pounds.

Unemployment benefits. The main unemployment benefit in the U.K. is the Jobseeker’s Allowance.

In 2006, the quarterly allowance was equal to £ 746 for unemployed individuals older than 24.
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F Numerical procedure

Discretization. I have five continuous state variables that need to be discretized: labor productivity,

tenure, liquid assets, retirement wealth, and average lifetime earnings. Labor productivity is placed on a

grid with 7 elements using the method of Tauchen (1986). Tenure is placed on a grid with 9 elements

(with all period past the 9th quarter of tenure treated equally). Liquid assets and retirement wealth are

discretized in a way that gives smaller gaps between successive entries on the grid at lower levels. For each

age, liquid assets are placed on a grid with 20 elements (7 for strictly negative values and 12 for strictly

positive values), and retirement wealth on a grid with 16 elements. Average earnings are placed on a grid

of 7 elements.

Consumption is not placed on a grid, and individuals can choose any feasible consumption level.

401(k) contribution rates are naturally discrete, and in the firms in the estimation sample contributions

are often restricted to be below 15% of salary. Thus, I adopt a grid of contribution rates with 16 elements:

0%, 1%,...,15% of salary. Early withdrawals from the DC account are restricted to take one of ten values.

That is, unemployed individuals can withdraw 0%, 1%, 2%, 5%, 10%, 15%, 25%, 50%, 75% or 100% of

their DC wealth. In retirement, DC withdrawals can take one of 101 values (0%, 1%,2%,...,99%, 100%).

Interpolation. In order to evaluate the value function at points not in the discrete subset of points in

the discretized state space, I use linear interpolation in multiple dimension. To limit approximation error

despite having fairly coarse grids, I use a method proposed by Carroll (2012). I approximate a quasi-linear

transformation of the value function. The transformed value function is closer to linear than the actual

one, which implies that linear interpolation is more accurate despite having few grid points. I verify the

accuracy of my numerical procedure by simulating the model—at the parameter values in my baseline

estimation—with more grid points and obtain similar results.

Optimization. I solve for the DC contribution and withdrawal choices using a grid search. Given a

DC contribution or withdrawal choice, I solve for the liquid asset level (which implies the consumption

level) using a golden section search.

Estimation. I estimate the model in three steps. Each step involves solving the model for 2,744

unique combinations of the model’s three parameters. After each step, I reduce the step-size and center

the grid of parameters under consideration around the optimal value found in the previous step. For each

combination of preference parameters, I solve for the value function by iterating the problem from the last

period of life (period 272 corresponding to age 90). I then simulate 5,000 individuals in the opt-in group

and 5,000 in the auto-enrollment group with identical realization of the stochastic variables. Estimation
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is computationally intensive. The program was compiled with Intel Fortran and each estimation round

was parallelized on 392 computer processors using Yale High Power Computing facility.

G Sensitivity

I plot in Figure 20 the elements of the sensitivity matrix as defined in Andrews et al. (2017). These values

capture how a 1 percentage point increase in each empirical moment changes the estimated parameters.

Time preferences. According to the sensitivity matrix plotted in Figure 20, more contributions at

the employer match threshold (6% of salary), and fewer contributions above (≥10%), would imply to

a higher estimate of the elasticity of intertemporal substitution. In contrast, for the auto-enrolled, both

contributions at the match threshold and above increase the estimated discount factor. This result is

consistent with the finding in Best et al. (2018) that bunching at—with missing mass above—an interest

rate notch can identify the elasticity of intertemporal substitution separately from the discount factor.

Opt-out cost. The sensitivity measure implies that higher participation under auto-enrollment would

increase the estimated opt-out cost. Note, however, that there is limited potential for a higher opt-out cost

estimate because participation under auto-enrollment is above 95% in the data.
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Figure 20: Sensitivity of preference parameters to estimation moments
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Notes: This figure shows the sensitivity matrix as defined in Andrews et al. (2017). Sensitivity values are rescaled to
correspond to a 1 percentage point increase in each moment.
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H Proofs of Section 2.3

Let Vs
t (d) be the value of contribution s when the default is equal to d:

Vs
t (d) = U (s, d) + δVt+1 (s)

I consider two default contribution rates d and d such that d < d. I divide the contribution choice set S

into contribution rates strictly below d (S = {s < d }) and contribution rates above (S = {s ≥ d}). A

worker facing a default d chooses a contribution rate s∗ such that:

s∗ = argmax
s∈S

{
max {Vs

t (d)}s∈S , max {Vs
t (d)}s∈S

}
In what follows, I show that a model with opt-out costs and models with either loss-averse preferences

or psychological anchoring contributions, make opposite predictions about the effect of increasing the

default from d to d on the likelihood of contribution strictly below d.

H.1 Opt-out costs

Proof. In what follows I provide a demonstration of Proposition 1. The value function with opt-out costs

is given by:

V s
t (d) =


u ((1− s)wt − k) + δVt+1 (s) if s 6= d

u ((1− s)wt) + δVt+1 (s) if s = d

I assume that u (�) is strictly increasing and concave (u′ > 0, u′′ < 0), and that the continuation value

Vt+1 (�) is strictly increasing and concave in the retirement contribution rate (V ′ > 0, V
′′
< 0).50

A worker selects a contribution rate s∗ 6= d if it is better than staying at the default:

V s∗
t (d)− V d

t (d) > 0

and (conditional on opting out) s is preferred to all other contribution rates:

s∗ = arg max {V s
t (s)}s∈S

50The assumption that Vt+1 is concave in the retirement contribution rate may not always hold because of the discrete nature
of the contribution choice decision. In practice, with sufficient uncertainty about the future, the continuation value Vt+1 is
generally concave.
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Let s ∈ S such that d > d > s. Since u is increasing and strictly concave in take home pay:

u ((1− s)wt)− u ((1− d)wt)

(d− s)wt
<
u ((1− s)wt)− u

((
1− d

)
wt
)(

d− s
)
wt

(17)

Since V is strictly increasing and concave in the retirement contribution rate:

Vt+1 (d)− Vt+1 (s)

(d− s)
>
Vt+1

(
d
)
− Vt+1 (s)(

d− s
)

⇒ −δVt+1 (d)− Vt+1 (s)

(d− s)wt
< −δ

Vt+1

(
d
)
− Vt+1 (s)(

d− s
)
wt

(18)

Combining (17) and (18):

(u ((1− s)wt) + δVt+1 (s))− (u ((1− d)wt) + δVt+1 (d))

(d− s)wt
<

(u ((1− s)wt) + δVt+1 (s))−
(
u
((

1− d
)
wt
)

+ δVt+1

(
d
))(

d− s
)
wt

⇒ V
s
t (s)− V d

t (d)

d− s
<
V
s
t (s)− V d

t

(
d
)

d− s
(19)

Consider a worker whose preferred contribution rate, conditional on switching, s∗ belongs to S:

s∗ = arg max
{
V
s
t (s)

}
s∈S = arg max {V s

t (s)}s∈S

⇒ V
s∗

t (s∗)− V d
t (d) > 0 and V

s∗

t (s∗)− V d
t

(
d
)
> 0

Combining this result with inequality (19) implies that for this worker:

V
s∗

t (s∗)− V d
t (d) < V

s∗

t (s∗)− V d
t

(
d
)

⇒ V
d
t (d) > V d

t

(
d
)

This implies that:

Pr
(
V
s∗

t (d) > V
d
t (d)

)
≤ Pr

(
V
s∗

t

(
d
)
> Ṽ

s∗1
t

(
d
))

⇒ Pr (s∗ ∈ S |d) ≤ Pr
(
s∗ ∈ S | d

)
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H.2 Loss aversion

Proof. In what follows I provide a demonstration of proposition (2). The value function of a loss averse

agent contributing s is given by the following expression (with v′ < 0, η > 0 and λ ≥ 1).

V s
t (d) = U (s, d) + β (1−ma)Et (Vt+1 (s))

U (s, d) =


ua (ct (s)) + η (v (s)− v (d)) if s < d

ua (ct (s)) + ηλ (v (s)− v (d)) if s ≥ d

I define Ṽ s
t

(
d, ~Xt

)
, a monotone transformation of V s

t

(
d, ~Xt

)
, such that:

Ṽ s
t (d) = V s

t (d) + ηv (d)

⇔ Ṽ s
t (d) = ua (ct) + ηv (s) + 1(s≥d)η (λ− 1) (v (s)− v (d)) (20)

Since ηv (d) does not depend on s, the optimal contribution choice s∗is such that :

s∗ = argmax
s∈S

{Vs
t (d)} = argmax

s∈S

{
Ṽs

t (d)
}

First, I consider the case where s ∈ S. From (20) I get that:

Ṽ s
t (d) = Ṽ s

t

(
d
)

= ua (ct) + ηv (s)

I define s∗ such that:

s∗ = argmax
s∈S

{V s
t (d)} = argmax

s∈S

{
V s
t

(
d
)}

This implies that:

⇒ V
s∗

t (d) = V
s∗

t

(
d
)

(21)

I next consider the case where s ∈ S. From (20) I get that:

Ṽ s
t

(
d
)
− Ṽ s

t (d) =


η (λ− 1) (v (d)− v (s)) ≥ 0 if d ≤ s < d

η (λ− 1)
(
v (d)− v

(
d
))
≥ 0 if s ≥ d

71



⇒ Ṽ s
t (d) ≤ Ṽ s

t

(
d
)
∀s ∈ S (22)

I defined s∗1 and s∗2 such that:

s∗1 = argmax
s∈S

{V s
t (d)} and s∗2 = argmax

s∈S

{
V s
t

(
d
)}

Inequality (22) implies that:

⇒ Ṽ
s∗1
t (d) ≤ Ṽ s∗2

t

(
d
)

(23)

Combining (21) and (23), I get that :

Pr
(
V
s∗

t (d) > Ṽ
s∗1
t (d)

)
≤ Pr

(
V
s∗

t

(
d
)
> Ṽ

s∗1
t

(
d
))

⇒ Pr (s∗ ∈ S |d) ≤ Pr
(
s∗ ∈ S | d

)

H.3 Psychological anchoring

Proof. In what follows I provide a demonstration of proposition (3). The value function under psycho-

logical anchoring is given by the following expression (with χ > 0).

V S
t (d) =


ua (ct (s)) + (δ + χ) (1−ma)Et (Vt+1 (d)) if s < d

ua (ct (s)) + δ (1−ma)Et (Vt+1 (d)) if s = d

ua (ct (s)) + (δ − χ) (1−ma)Et (Vt+1 (d)) if s > d

(24)

First, I consider the case where s ∈ S. From (24) I get that:

V s
t (d) = V s

t

(
d
)

s∗ = argmax
s∈S

{V s
t (d)} = argmax

s∈S

{
V s
t

(
d
)}

⇒ V
s∗

t (d) = V
s∗

t

(
d
)

(25)

Next, I move to the case where s ∈ S. I consider 3 possibilities:
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If s =
{
d, d
}

then:

V s
t

(
d
)
− V s

t (d) = χ (1−ma)Et (Vt+1 (s)) > 0

If d > s > d then:

V s
t

(
d
)
− V s

t (d) = 2χ (1−ma)Et (Vt+1 (s)) > 0

If s > d then:

V s
t (d) = V s

t

(
d
)

I define s∗1 and s∗2 as the preferred contribution in the set S under each default:

s∗1 = argmax
s∈S

{V s
t (d)} and s∗2 = argmax

s∈S

{
V s
t

(
d
)}

Given that:

V s
t (d) ≤ V s

t

(
d
)
∀s ∈ S

It follows that:

V
s∗1
t (d) ≤ V s∗2

t

(
d
)

(26)

Combining (25) and (26), I get that :

Pr
(
V
s∗

t (d) > Ṽ
s∗1
t (d)

)
≤ Pr

(
V
s∗

t

(
d
)
> Ṽ

s∗1
t

(
d
))

⇒ Pr (s∗ ∈ S |d) ≤ Pr
(
s∗ ∈ S | d

)
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