Default Options and Retirement Saving Dynamics

Taha Choukhmane

NBER (2019-2020), MIT Sloan (2020-)

September 2019

Motivation

• Key insight from behavioral economics: default options matter

Motivation

- Key insight from behavioral economics: default options matter
- High stakes setting: retirement savings plans

Default = non-participation	Default = participation
Call provider to enroll	Call provider to opt-out
${\sim}50\%$ participate after 1yr	> 90% participate after 1yr
"Opt-in regime"	"Autoenrollment"

Motivation

- Key insight from behavioral economics: default options matter
- High stakes setting: retirement savings plans

Default = non-participation	Default = participation
Call provider to enroll	Call provider to opt-out
${\sim}50\%$ participate after 1yr	$>\!90\%$ participate after 1yr
"Opt-in regime"	"Autoenrollment"

• Autoenrollment (AE) is affecting ~100 million people worldwide:

- NZ ('07), UK ('12), Turkey ('17): all private sector workers
- US: the majority of 401(k) plans already implements AE
 5 states are extending AE to workers without a 401(k)

This Project

Many studies on AE short-run impact but long-run effect unknown:

Q: What is the effect of autoenrollment on **lifetime** savings and **welfare**?

This Project

Many studies on AE short-run impact but long-run effect unknown:

Q: What is the effect of autoenrollment on **lifetime** savings and **welfare**?

Challenge: no long-run data because AE is a recent policy **This paper:**

- Identify the *mechanism* through which AE affects behavior
- Ø Build and estimate a *lifecycle model* to study AE long-run effect

Outline

1 Three Facts about Autoenrollment

2 A Lifecycle Model with Default Effects

- Model
- Estimation

3 Results

- Long-term effect
- Optimal policies

④ Conclusion

Two Datasets

U.S. 401(k) Data:

- New proprietary dataset I obtained from a large US pension provider
- Monthly contributions, balances, and asset allocation for 4m workers btw. 2006-17

U.K. Nationally Representative Data:

- ASHE 2006-16 : nationally representative 1% panel
- Follows workers across successive jobs

Three Facts about Autoenrollment

Two **new** facts:

Fact I: AE in current job \downarrow saving in next job

Fact I: AE Reduced Saving in Next Job

Mandatory Autoenrollement for all U.K. private sector employees Policy roll-out by employer size between 2012-2017

Policy rollout

Fact I: AE Reduced Saving in Next Job

AE reduced participation by 11% in next opt-in job!

Existing within-job estimates may overstate AE effect on lifetime savings

Policy start date	Actual 2012							
		Panel A - Participation rate						
AE to non-AE	-0.109** (0.052)							
AE to AE	0.013 (0.017)							
Panel B - Contribution in (% of pensionable pay)								
AE to non-AE	-0.472** (0.185)							
AE to AE	-0.048 (0.066)							
Observations	35,651	35,651	35,651	35,651	35,651	35,651	35,651	35,651
$Size_{j-1} X Size_j$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Employere _j X Year	✓	✓	✓	<u> </u>	<u> </u>	<u>√</u>	✓	<u>√</u>
Robust stand	ard errors clust	tered by cu	rrent employ	/er ; *** p<	0.01, ** p<	0.05, * p<0).1	

 $\underline{Sample:} 22-60y \& \leq 1y tenure in ASHE 2006-17. \underline{Additional controls:} total pay, previous total pay, tenure, pay$

Fact I: AE Reduced Saving in Next Job

AE reduced participation by 11% in next opt-in job!

Existing within-job estimates may overstate AE effect on lifetime savings

Policy start date	Actual 2012	2005	2006	2007	2008	2009	2010	2011
	Panel A - Participation rate							
AE to non-AE	-0.109** (0.052)	0.073 (0.062)	0.022 (0.041)	-0.003 (0.055)	0.022 (0.054)	0.046 (0.066)	0.008 (0.055)	-0.056 (0.073)
AE to AE	0.013 (0.017)							
	Panel B - Contribution in (% of pensionable pay)							
AE to non-AE	-0.472** (0.185)	0.023 (0.219)	-0.092 (0.173)	0.161 (0.489)	-0.123 (0.214)	0.021 (0.224)	-0.234 (0.213)	-0.137 (0.300)
AE to AE	-0.048 (0.066)							
Observations	35,651	35,651	35,651	35,651	35,651	35,651	35,651	35,651
Size _{i-1} X Size _i	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Employere _i X Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Robust standa	ard errors clus	tered by cu	rrent employ	/er;*** p<	(0.01, ** p<	0.05, * p<0).1	

 $\underline{\text{Sample:}} 22-60y \& \leq 1y \text{ tenure in ASHE 2006-17.} \underline{\text{Additional controls:}} \text{ total pay, previous total pay, tenure, pay, te$

6

Three Facts about Autoenrollment

Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model to extrapolate effect after many job switches

Three Facts about Autoenrollment

Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model ...

Fact II: Increasing the AE default \downarrow participation

Fact II: Increasing Default \downarrow Participation

Compare workers hired before/after 86 U.S. firms increased their default Example: $3\% \rightarrow 6\%$

<u>Controls:</u> plan, year, and age FEs, log tenure <u>Sample:</u> 86 US 401k plans.159,216 workers w/ \leq 1y of tenure post grace-period

Fact II: Increasing Default \downarrow Participation Compare workers hired before/after 86 U.S. firms increased their default Example: $3\% \rightarrow 6\%$

<u>Controls:</u> plan, year, and age FEs, log tenure <u>Sample:</u> 86 US 401k plans.159,216 workers w/ \leq 1y of tenure post grace-period

Fact II: Increasing Default \downarrow Participation

Compare workers hired before/after 86 U.S. firms increased their default $${\rm Example:}~3\% \to 6\%$$

<u>Controls:</u> plan, year, and age FEs, log tenure <u>Sample:</u> 86 US 401k plans.159,216 workers w/ \leq 1y of tenure post grace-period

Fact II: Increasing Default \downarrow Participation

Nudging workers to contribute more w/ higher default \dots

... led more to drop-out and contribute at the lowest rates!

Opt-out cost: fits this evidence

- Ex. worker prefered contirbution rate 1%
- 3% default: stay at 3% (not worth bearing opt-out cost)
- 6% default: drop to 1% (far enough from prefered rate)

Other theories (loss aversion, anchoring): opposite prediction

Three Facts about Autoenrollment Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model ...

Fact II: Increasing the AE default \downarrow participation => ... w/ an opt-out cost

Three Facts about Autoenrollment Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model ...

Fact II: Increasing the AE default \downarrow participation => ... w/ an opt-out cost

One known facts w/ a **new interpretation:**

Fact III: Median non-AE catch-up to AE over 3yrs ...

Fact III: Median non-AE Catch-up to AE

Workers hired in the 12 months before/after AE at 3% in 34 firms

Fact III: Median non-AE Catch-up to AE

Workers hired in the 12 months before/after AE at 3% in 34 firms

Fact III: Median non-AE Catch-up to AE

Workers hired in the 12 months before/after AE at 3% in 34 firms

 \Rightarrow

Gains from switching:

- Tax benefit
- Generous employer match

Large opt-out cost:

DellaVigna ('06,'18): min. **\$1**,**200** Bernheim et al ('15): avg. **\$2**,**200**

Fact III: Median non-AE Catch-up to AE Workers hired in the 12 months before/after AE at 3% in 34 firms

 \Rightarrow

Gains from switching:

- Tax benefit
- Generous employer match

Large opt-out cost:

DellaVigna ('06,'18): min. **\$1**,**200** Bernheim et al ('15): avg. **\$2**,**200**

Fact III: Median non-AE Catch-up to AE Workers hired in the 12 months before/after AE at 3% in 34 firms

 \Rightarrow

Gains from switching:

- Tax benefit
- Generous employer match

Large opt-out cost:

DellaVigna ('06,'18): min. **\$1,200** Bernheim et al ('15): avg. **\$2,200**

Fact III: Median non-AE Catch-up to AE Workers hired in the 12 months before/after AE at 3% in 34 firms

Gains from switching:

- Tax benefit
- Generous employer match

Smaller opt-out cost:

⇒ In a lifecycle model I estimate an opt-out cost of \sim **\$250**

Three Facts about Autoenrollment Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model ...

Fact II: Increasing the AE default \downarrow participation => ... w/ an opt-out cost

One known facts w/ a **new interpretation:**

Fact III: Median non-AE catch-up to AE over 3yrs ...

=> opt-out cost is small

Three Facts about Autoenrollment Two **new** facts:

Fact I: AE in current job \downarrow savings in next job \Rightarrow need a model ...

Fact II: Increasing the AE default \downarrow participation => ... w/ an opt-out cost

One known facts w/ a **new interpretation:**

Fact III: Median non-AE catch-up to AE over 3yrs ...

=> opt-out cost is small

... but heterogeneity matters

Heterogeneity Matters Firm A - Choi et al '04

In the short run: large treatment effects only at the bottom ...

... will these savings increase persist in the long run ?

Outline

Three Facts about Autoenrollment

2 A Lifecycle Model with Default Effects

- Model
- Estimation

3 Results

- Long-term effect
- Optimal policies

④ Conclusion

The Model

I build and estimate a detailled lifecycle model with default effects

- Features rich economic environment (8 state variables) ...
 - **O** Assets: realistic retirement account, liquid saving, and unsecured debt
 - 2 Labor market: income and employment risk varies with age and tenure (SIPP data)
 - **Government:** progressive tax and benefit system (Social Security & UI)
 - **Demography:** mortality risk, and changing household composition over lifecycle

The Model

I build and estimate a detailled lifecycle model with default effects

- Features rich economic environment (8 state variables) ...
 - **O** Assets: realistic retirement account, liquid saving, and unsecured debt
 - **2** Labor market: income and employment risk varies with age and tenure (SIPP data)
 - **Government:** progressive tax and benefit system (Social Security & UI)
 - **Demography:** mortality risk, and changing household composition over lifecycle
- ... parsimonious specification of preferences (3 parameters):
 - **1 Time preferences:** standard (E.I.S. & exponential discount factor)
 - **Opt-out cost:** utility cost every time agent deviates from the default

Data and Estimation

Estimation Sample:

- $\bullet~34$ plans w/ a 50% match up to 6% and no autoescalation
- \bullet Workers hired in the 12 months before/after AE at 3%

Simulated Method of Moments results:

Estimates (quarterly freq.)						
EIS	disct. fact.	opt-out cost				
σ	δ	k				
0.455	0.987	\$254				
(0.013)	(0.001)	(11)				
χ^2	586					

Estimation Moments

Distribution of Contribution Rates

Employees in their 1st year of tenure

Distribution of Contribution Rates

Employees in their 1st year of tenure

Evolution over Tenure

Evolution over Tenure

Outline

Three Facts about Autoenrollment

2 A Lifecycle Model with Default Effects

- Model
- Estimation

3 Results

- Long-term effect
- Optimal policies

4 Conclusion

External validity

Why should we believe the model long-run predictions?

Advantage of structural estimation:

extrapolate to another policy, population, institutional setting, time-frame

External validity

Why should we believe the model long-run predictions?

Advantage of structural estimation:

extrapolate to another policy, population, institutional setting, time-frame

Out-of-Sample validation I: results

Model estimated using the introduction of AE at 3% predicts response to increasing the default

External validity

Why should we believe the model long-run predictions?

Advantage of structural estimation:

extrapolate to another policy, population, institutional setting, time-frame

Out-of-Sample validation I: results

Model estimated using the introduction of AE at 3% \ldots \ldots predicts response to increasing the default

Out-of-Sample validation II: results

Preference estimates from U.S. 401(k) plans ...

... predict the response to a national policy in the U.K.

AE ↑ Lifetime Savings at the Bottom Typical AE policy at 3% adopted by all employers

AE \uparrow Lifetime Savings at the Bottom

Typical AE policy at 3% adopted by all employers For most people: ↑ saving early-on ↓ saving later in life **BUT** large effects at the bottom of the lifetime earnings distrib.

Optimal Policy

Planner selects default to **maximize social welfare**: (selected default adopted by all employers over a lifetime)

- can be more patient than individuals (paternalistic)
- can put more weight on low-income (inequality-averse) Saez '02
- treat only a fraction of opt-out cost as welfare relevant Goldin, Reck '18

Optimal Policy

Planner selects default to **maximize social welfare**: (selected default adopted by all employers over a lifetime)

- can be more patient than individuals (paternalistic)
- can put more weight on low-income (inequality-averse) Saez '02
- treat only a fraction of opt-out cost as welfare relevant Goldin, Reck '18

Subject to employers' **budget constraint**:

Total profits + Wages + Matching costs = Constant

Utilitarian Policymaker

Utilitarian policymaker prefers the opt-in regime ...

Match and tax incentives \Rightarrow save more than implied by preference

AE shift cons. even more toward retirement $\Rightarrow\downarrow$ welfare

	Employers	Matching	Wages	
Levels	profits	rate	adjustment	
Utilitarian	Opt-in	Opt-in	Opt-in	

Utilitarian Policymaker

Utilitarian lifetime utility decreases for most but increases at the bottom (ex. 6% AE)

Inequality-Averse/Paternalistic Policymaker

Inequality-averse or paternalistic policymaker

sets default near match threshold

	Employers Matching		Wages	
Levels	profits	rate	adjustment	
Utilitarian	Opt-in	Opt-in	Opt-in	
Inequality averse	AE 6%	AE 5%	AE 5%	
Paternalistic	AE 6%	AE 6%	AE 6%	

Outline

Three Facts about Autoenrollment

2 A Lifecycle Model with Default Effects

- Model
- Estimation

3 Results

- Long-term effect
- Optimal policies

④ Conclusion

Summary of my Findings

People catch up over time ...

- workers undo much of AE positive effect by saving less later on
- AE in current job causes workers to save less at their next opt-in job

... therefore, a \$250 opt-out cost can explain default effect

• Not so costly to remain at default because can compensate late

AE increases lifetime welfare/savings only at the bottom

• optimal default is either 0% or employer match threshold (depends on social planner's preferences)

What have we learned I

• Life Cycle Hypothesis (LCH):

- ► AE effect seen as a major challenge to the LCH
- ► I show that w/ small friction LCH performs remarkably well

What have we learned II

• Nudges:

- ▶ in a dynamic setting savings nudges are less effective ...
- ... but can still have important distributional effects

Supplementary Material I

Choi et al '04 - Firm A

Default Propensity by Age

Back

22

Robustness

	(1)	(2)	(3)	(4)
	Baseline	Full var-cov	Opt-in	Autoenrolled
	model	weighting matrix	workers only	workers only
k	\$254	\$268	\$340	\$258
	(11)	(17)	(29)	(11)
δ	0.987	0.987	0.988	0.987
	(0.000)	(0.001)	(0.001)	(0.001)
σ	0.455	0.444	0.454	0.426
	(0.013)	(0.015)	(0.027)	(0.012)
χ^2 stat.	586	583	414	131
(df)	41	41	13	25

Sensitivity - Andrews, Gentzkow, Shapiro (2017)

Sensitivity - Andrews, Gentzkow, Shapiro (2017)

Sensitivity - Andrews, Gentzkow, Shapiro (2017)

Roll-out of Autoenrollment in the UK

Employer	Policy	Employer	Policy	Employer	Policy
size	staging date	size	staging date	size	staging date
120,000+	October, 2012	2,000+	August, 2013	61+	August, 2014
50,000+	November, 2012	1,250+	September, 2013	60+	October, 2014
30,000+	January, 2013	800+	October, 2013	59+	November, 2014
20,000+	February, 2013	500+	November, 2013	58+	January, 2015
10,000+	March, 2013	350+	January, 2014	54+	March, 2015
6,000+	April, 2013	250+	February, 2014	50+	April, 2015
4,100+	May, 2013	160+	April, 2014	40+	August, 2015
4,000+	June, 2013	90+	May, 2014	30+	October, 2015
3,000+	July, 2013	62+	July, 2014		

Roll-out of Autoenrollment in the UK

Eligible private sector employees 2009 to 2015

Default Mechanism

Other Mechanisms: **back**

- Convex Adjustment cost: button
 - ► One-sided: Temptation (Gul, Pesendorfer, '01) Loss aversion (Prelec, Loewenstein et al, '92)

$$U\left(c_{\gamma}|\bar{\tau}_{\gamma}^{def}\right) = \begin{cases} u_{\gamma}(c_{t}) & \text{if } \tau_{\gamma} \leq \bar{\tau}_{\gamma}^{def} \\ u_{\gamma}(c_{t}) - \alpha \left[u\left(c_{\gamma}\left(\bar{\tau}_{\gamma}^{def}\right)\right) - u\left(c_{\gamma}\right) \right] & \text{if } \tau_{\gamma} > \bar{\tau}_{\gamma}^{def} \end{cases}$$

- ► Two-sided: anchoring (Bernheim et al, '15)
 - ★ counterfactual prediction:/ default \Rightarrow / paritcipation
- Indorsement effects/ Default as advice:
 - ► Large effects despite public randomization into AE (Blumenstock et al, '17)
- Unawareness: employees may not be aware of AE
 - ► Text reminders have no effect on default effect (Blumenstock et al, '17)
 - ▶ No effect from a financial education intervention (Choi et al, '11)

Opt-out Cost

Opt-out cost model: back

$$V^{S}(d) = u\left((1-s)w - \mathbb{1}_{(s\neq d)}.k\right) + \delta V(sw)$$

Assume $u^{'}>$ 0, $u^{''}<$ 0 and $V^{'}>$ 0, $V^{''}<$ 0

Proposition. With an opt-out cost, increasing the default contribution rate from \underline{d} to \overline{d} (weakly) increases contributions strictly below \underline{d} :

Loss Aversion

Loss aversion model: **back**

$$U(s,d) = \begin{cases} u_a(c_t(s)) + \eta \left(u_a(c_t(s)) - u_a(c_t(d)) \right) & \text{if } s < d \\ u_a(c_t(s)) + \eta \lambda \left(u_a(c_t(s)) - u_a(c_t(d)) \right) & \text{if } s \ge d \end{cases}$$

where c(s) is the optimized consumption policy:

$$c_{t}(s) = \operatorname{argmax} (1+\eta) u_{a}(c_{t}) + \beta (1-m_{a}) \mathbb{E}_{t}(V_{t+1}(s))$$

Proposition. Under loss-averse preferences, increasing the default contribution rate from \underline{d} to \overline{d} (weakly) decreases contributions strictly below \underline{d} :

$$\Pr(s^* < \underline{d} \mid d = \underline{d}) \le \Pr(s^* < \underline{d} \mid d = \overline{d})$$

Psychological Anchoring

Anchoring model: **back**

Following Bernheim et al (2015), I assume that the anchoring parameter χ shifts the participants preferences toward the value that would rationalize the default as an optimal choice:

$$V_t^S(d) = \begin{cases} u_a(c_t(s)) + (\beta + \chi)(1 - m_a) \mathbb{E}_t(V_{t+1}(d)) & \text{if } s < d \\ u_a(c_t(s)) + \beta(1 - m_a) \mathbb{E}_t(V_{t+1}(d)) & \text{if } s = d \\ u_a(c_t(s)) + (\beta - \chi)(1 - m_a) \mathbb{E}_t(V_{t+1}(d)) & \text{if } s > d \end{cases}$$

Proposition. When the default serves as a psychological anchor, increasing the default contribution rate from \underline{d} to \overline{d} (weakly) decreases contributions strictly below \underline{d} :

$$\Pr(s^* < \underline{d} \mid d = \underline{d}) \le \Pr(s^* < \underline{d} \mid d = \overline{d})$$

Specification I (back Mech) (back SMM)

- Present bias / inertia ...
- ... but does not affect contribution conditional on acting

Present bias \Leftrightarrow higher adj. cost

Specification I (back Mech) (back SMM)

- Present bias / inertia ...
- ... but does not affect contribution conditional on acting

Present bias \Leftrightarrow higher adj. cost

au reflects present biased preference eta δ

Estimation:

• I fix the short-term discount factor at (β) and re-estimate the model:

$$\{eta=0.5\,;\,\delta=0.999\,;\,\sigma=0.625\,;\,k=$$
 \$430 $\}$ and

 $\{eta=0.8;\,\delta=0.989;\,\sigma=0.454;\,k=\$269\}$

With a higher long-term discount factor the model no longer fits the age-heterogeneity

Model Fit: back SMM

With a higher long-term discount factor the model no longer fits the age-heterogeneity

Long-Term Effect - Present bias $\beta = 0.5$

 $\{eta = 0.5; \, \delta = 0.999; \, \sigma = 0.625; \, k = \$430\}$

AE policy at 3% adopted by all employers: **back**

Long-Term Effect - Present bias $\beta = 0.8$

 $\{eta = 0.8; \, \delta = 0.989; \, \sigma = 0.454; \, k = \$269\}$

AE policy at 3% adopted by all employers: **back**

Optimal policies - Present bias $\beta = 0.5$

$$\{eta = 0.5; \, \delta = 0.999; \, \sigma = 0.625; \, k = \$430\}$$

		Employers	Matching	Wages
		profits	rate	adjustment
Utilitarian	$\pi = 1$	AE 9%	AE 9%	AE 9%
	$\pi=0$	AE 10%	AE 10%	AE 10%
Inequality averse	$\pi = 1$	AE 10%	AE 10%	AE 10%
	$\pi=0$	AE 11%	AE 10%	AE 11%

Optimal policies - Present bias $\beta = 0.8$

$$\{eta=0.8$$
 ; $\delta=0.989$; $\sigma=0.454$; $k=$ \$269 $\}$

		Employers profits	Matching rate	Wages adjustment
Utilitarian	$\pi=1$	Opt-in	Opt-in	Opt-in
	$\pi=0$	AE 15%	Opt-in	Opt-in
Inequality averse	$egin{array}{c} \pi = 1 \ \pi = 0 \end{array}$	AE 6%	AE 5%	AE 5%
	$n \equiv 0$	AE 070	AE 370	AE 070

Extension: Proportional Opt-out Cost

Model: back SMM back Heter

I introduce an opt-out cost \tilde{k} that is proportional to earnings:

$$u_{a}\left(c_{t}-\mathbb{1}_{\left(s_{t}\neq d_{t}
ight)}\widetilde{k}.w_{t}
ight)$$

Estimate:

I estimate \tilde{k} to be equal to 3.16% of quarterly income (i.e. \$292 for average earner) - { $\beta = 0.985$; $\sigma = 0.334$; k = 3.2%}

Long-Term Effect - Proportional Cost

 $\{eta=0.985;\,\sigma=0.334;\,k=3.2\%\}$

AE policy at 3% adopted by all employers: **back**

Long-Term Effect - Proportional Cost

 $\{eta=0.985;\,\sigma=0.334;\,k=3.2\%\}$

AE policy at 6% adopted by all employers: **back**

Optimal policies - Present bias $\beta = 0.5$

$$\{eta=0.985$$
 ; $\sigma=0.334$; $k=3.2\%\}$

		Employers	Matching	Wages
		profits	rate	adjustment
Utilitarian	$\pi=1$	AE 6%	AE 4%	AE 4%
	$\pi=0$	Opt-in	Opt-in	AE 4%
Paternalistic	$\pi = 1$	AE 6%	AE 5%	AE 5%
	$\pi=0$	AE 6%	AE 5%	AE 5%

Wealth to earnings ratio over the lifecycle

Ratio of net wealth to earnings by age: back

- Data: Survey of Consumer Finances 2016
- <u>Sample</u>: households where head or spouse has any type of account-based pension plan on current job
- Total wealth: all assets net of all outstanding debt

AE Adoption by all Employers

AE policy at 3% adopted by all employers: back

profit adjustment = wage adjustment = match adjustment

AE Adoption by all Employers

AE policy at 6% adopted by all employers: back

profit adjustment = wage adjustment = match adjustment

AE Adoption by all Employers

AE policy at 10% adopted by all employers: **back**

profit adjustment = wage adjustment = match adjustment

Utilitarian Policymaker

Inequality-Averse Policymaker

Paternalistic Policymaker

Out-of-Sample Validation I Compare workers hired before/after AE default increased Contributions at 0%. 1% or 2% 8% Δ in percentage pts 6% 4% 2% 0% 4% 5% 6%

AE default increased from 3% to

Controls: plan, year, and age FEs, log tenure

<u>Sample:</u> 50 US 401k plans.97,714 workers w/ \leq 1y of tenure post grace-period

All cases: 85% success rate at the 10% level back

Out-of-Sample Validation I Compare workers hired before/after AE default increased Contributions at 0%. 1% or 2% 8% Δ in percentage pts 6% 4% 2% 0% 4% 5% 6% AE default increased from 3% to

Controls: plan, year, and age FEs, log tenure

<u>Sample:</u> 50 US 401k plans.97,714 workers w/ \leq 1y of tenure post grace-period

All cases: 85% success rate at the 10% level back

	Contrib <initial default<="" th=""><th colspan="2">Sample size</th><th></th></initial>		Sample size		
	(1)	(2)	(3)	(4)	(5)
	Data	Model	Nbr. of	Nbr. of	P-value
	86 plans	prediction	plans	worker	difference
Default increased by 1%					
Default 2% $ ightarrow$ 3%	0.017	0.007	11	31,364	[0.483]
	(0.014)				
Default 3% $ ightarrow$ 4%	0.016	0.005	10	13,116	[0.430]
	(0.013)				
Default 4% $ ightarrow$ 5%	-0.003	0.013	3	1,821	[0.513]
	(0.020)				
Default 5% $ ightarrow$ 6%	-0.016	0.034	5	3,970	[0.005]
	(0.009)				

Individual's characteristics	\checkmark
Plan FF	1

	Contrib <initial default<="" th=""><th>Samp</th><th></th></initial>		Samp		
	(1)	(2)	(3)	(4)	(5)
	Data	Model	Nbr. of	Nbr. of	P-value
	86 plans	prediction	plans	worker	difference
Default increased by 2%					
Default 1% $ ightarrow$ 3%	0.023	0.020	1	1,067	[0.917]
	(0.025)				
Default 2% $ ightarrow$ 4%	-0.005	0.012	4	1,793	[0.231]
	(0.011)				
Default 3% $ ightarrow$ 5%	0.022***	0.018	14	56,011	[0.456]
	(0.005)				
Default 4% $ ightarrow$ 6%	0.031***	0.047	9	17,989	[0.048]
	(0.007)				
Default 6% $ ightarrow$ 8%	0.067***	0.148	1	673	[0.000]
	(0.021)				

	Contrib <initial default<="" th=""><th>Samp</th><th></th></initial>		Samp			
	(1)	(2)	(3)	(4)	(5)	
	Data	Model	Nbr. of	Nbr. of	P-value	
	86 plans	prediction	plans	worker	difference	
Default increased by 3 or 4%						
Default 3% $ ightarrow$ 6%	0.045***	0.052	26	27,190	[0.648]	
	(0.016)					
Default 3% $ ightarrow$ 7%	0.060	0.132	2	4,219	[0.146]	
	(0.017)					
Individual's characteristics	\checkmark					
Plan FE	\checkmark					
* p	* p<0.10, ** p<0.05, *** p<0.01					

back

Preference estimates from U.S. 401(k) plans ...

... predict the response to a national policy in the U.K.

Preference estimates from U.S. 401(k) plans ...

... predict the response to a national policy in the U.K.

US pref. estimates...

back

Opt-out cost at £160 (avg. exch. rate over 06-17) Time pref. $\delta=0.987$ and $\sigma=0.455$

... w/ UK calibration:

Estimate the UK Income process using AShE Estimate heterogeneity in employers contribution formulas (5 types) Calibrate the UK tax and public pensions system

back

Mandatory Autoenrollement for all U.K. private employees Policy roll-out by employer size between 2012-2017

Within-job effect:

back

Mandatory Autoenrollement for all U.K. private employees Policy roll-out by employer size between 2012-2017

Within-job effect:

back

Mandatory Autoenrollement for all U.K. private employees Policy roll-out by employer size between 2012-2017

Participation after a job-switch:

back

Mandatory Autoenrollement for all U.K. private employees Policy roll-out by employer size between 2012-2017

Participation after a job-switch:

AE to non-AE

AE to AE

After job-switch (from AE to AE):

Peer Effects?

No difference in saving behavior btw. those hired in the 12 months prior to AE and those hired earlier back

Peer Effects?

No difference in saving behavior btw. those hired in the 12 months prior to AE and those hired earlier back

