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Current Approach | Persisting Past Demand
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GPU
reliable way to forecast CPU demand—a owntime
L Customer
Churn
data flow, scheduling, and orchestration.

L Lost Profit
accurately forecast CPU demand in order to

O It is vital to reduce Capital Expenditure and
have space for high-value GPUs.

ML and DS Backed Approach

"We currently have no way to account for uncertainty . . . If we can account for uncertainty, we can decrease the risk of stockouts and I'll have

a reasonable buffer with a data-driven decision support tool.”

Head CPU Planner, CoreWeave

Challenges and Approach Exploratory Data Analysis
Intermittent Demand & Regime Shifts

Erratic Demand Data with 3-6 Month Span s
* Dips and Peaks are NOT outages. These ]-—— decrease
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Relationship between how the number of GPUs effects CPU Node Demand

can be explained.
* Historical data alone is not enough. increase
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—o— cd-gp-i64-erapids

Demand

cd-hc-a384ib-genoa

Demand

cd-hp-a96-genoa

Engineering Data Capacity Planning Data turin-gp-|

Richly Engineered
Data Set

252 unique time series of Varying
| NumberofGlPUs | | Lengths, STC]I’T, Ond End DOTeS.

Historical Data Supply Chain Data

Modeling Architecture Methodology and Process o
Global Models + Feature Multi-Step Forecasting @@ - @% - \ﬁ -
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Bayesian Regularized Gradient Quantile

Day 30 is predicted using day 29’s prediction Optimization Regression Boosted Trees Regression
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Global Forecast Stack Residual Forecast Backcast
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Start Linear, then Advance

Business Impact and Implementation

- lSamplo Modion + Next 2 Months: Model in production
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80% Prediction Interval

. 50% Prediction Interval

e Performance Evaluated in Real-Time
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Reduction in forecasting error (MAPE)
compared to baseline
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