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Problem Statement and Objective

Dick’s Sporting Goods (DSG) has an online catalog of 2.4M+ —————— @ Product L= p—
SKUs, but key product attributes are only ~40% wozs | 9 |@ @ Description Short
complete. This limits search and filter performance, product 5 for oym trainig. '
discoverability, and business analytics. e
, ] ] Product Product Product
Our goal is to leverage a Retrieval-Augmented Generation .
CoT Catalog Description Image
(RAG)-based LLM pipeline to:
Structured data Short text Visual input used to
R ounad B including product containing cues like infer style-related
. ID, category, and fit, material, brand, details such as
) E]Q = known attribute and use-case sleeve length,
. values neckline, and cut
Impute missing product Improve recommendation quality
attributes and user engagement

Methodology

1.Gather Inputs 2. Retrieve neighbors 3. Build prompt 5. Ensure write-back
and QA pipeline
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4. LLM Predicts
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Modular, self-
contained pipeline

Product ?elrgnmar 2 Retrieved attributes can scale across
Ontology style ID's
Relaxed O

LLM Inference and Guardrails

Retrieval Pipeline

We retrieve similar styles using text and image embeddings to provide A large language model infers the most likely value per missing attribute.
relevant context for LLM prediction. This improves prediction accuracy Tuning Decisi
. . unin ecisions
and reduces hallucination. e ;
* Product description, product image, ) Number of
and a list of candidate values from - candidates
T, |npUtS S|m|lar SKUS. J considered?
% * Apply category heuristics as a "retail 1 B rTwriZﬁ?‘iclﬁ;te
T B ?g)fociizlrls; xwth deep knowledge of product J ; a or prevent
Knowledge : hallucination?
Embed product
text and image Use FAISS Foreach product  Enforce obvious dependencies. ) Standardize
using CLIP (Facebook Al with missing e e.g., Tank = sleeveless; Polo = collar + f /\ or limit
. Similarity Search) attributes, retrieve Rule-based|  buttons. J deterministic
(Contrastive . : checks rules?
to index combined the top-k most '
Language—-Image . . :
. embeddings for similar styles with _
Pretraining) into a . In standardized JSON format, the model
fast, scalable known attribute .
shared vector . . { - ; outputs one value per requested
similarity retrieval. values. :
space. JSON attribute.

Result and Impact

Predicted vs True Value: Semantic Similarity. _ _ _ ﬂVhy the Model Predicteh Estimated annual incremental revenue
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10 A 6.8% 4.6% 0 \ Extra clicks: 1.5M — ~30k orders
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0 . == Missing Attribute ( )
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Semantic Similarity Band context from too subtle
similar items to detect

S derivation: 12-14M daily impressions + 48 results x 365 = 91-106M.
Assumption-based; to be validated via A/B. Figures illustrative.
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