What's next?

A Cross-Business Recommendation Engine for FEMSA

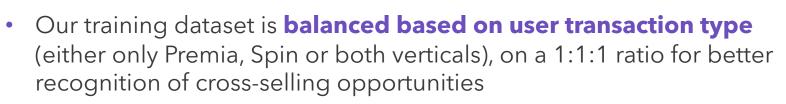
• Project Sponsors: Paloma Gonzalez, Lorena Garza

- Faculty Advisor: Jose Pacheco
- Students: Dafne Badilla, Roland Rocafort

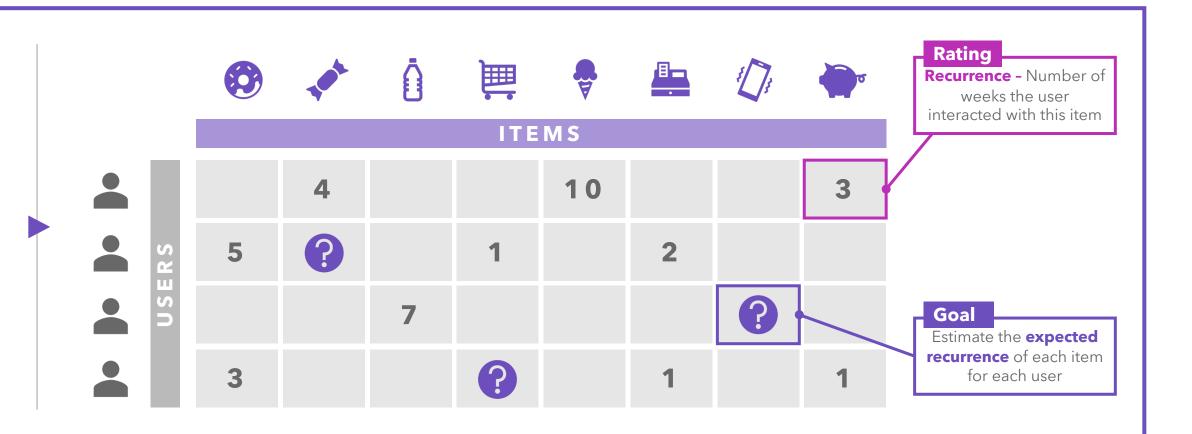
Problem Statement

- FEMSA is one of Mexico's largest holding companies, and a key player in beverages and convenience in Latin America
- FEMSA's retail brand, Oxxo, has become the largest convenience store chain in Mexico
- FEMSA's digital wallet, Spin, provides financial services and products in store, where customers can pay their utility bills, buy phone topups, and make deposits
- FEMSA is now **shifting to an integrated ecosystem**, and as the company looks to generate synergies between businesses

Our Data

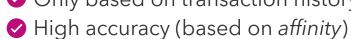


• We have **26 items from Oxxo**, including macro-categories as candy and groceries; and 20 items from Spin, including bill payments and deposits, among others



Methodology

BASELINE MODEL



✓ Fast training

Fast scoring

We tested the effectivity of our baseline model on **two** controlled settings, testing 8 categories on each, sending push notifications:

Check out our discounts in this item!

Product's ranking per user, mainly based on interactions rather than explicit feedback

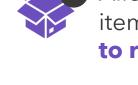
III. Value gap analysis

Given the experiment results, we estimate the expected impact of deploying our Final Model, using "same predicted category" users

FINAL MODEL

- Deep learning based
- Bilateral Variational Autoencoders Learns latent representations
- Fast training
- Scalable

The better the recommender system, less cross-selling occurs



of users and items

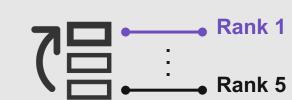
Allowing for previously seen items provides **less incentives** to recommend new items

Similarity based Recommendations

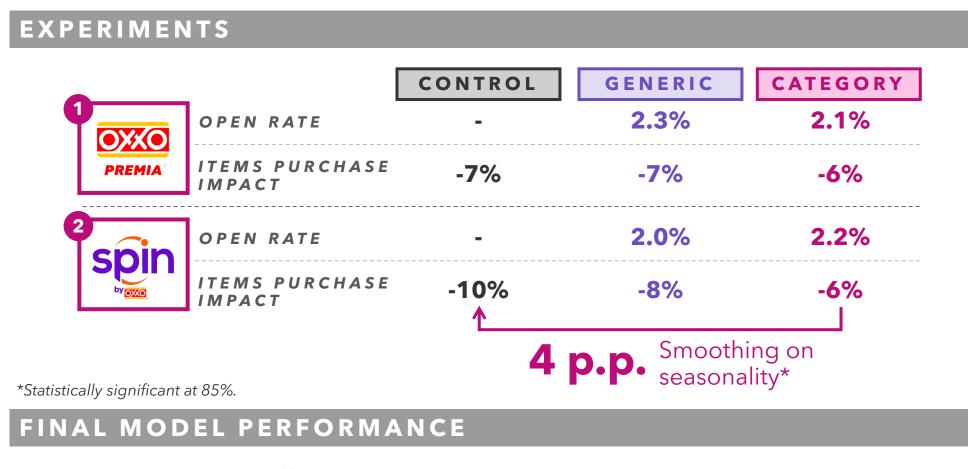
We identify **similarity groups** between *single-business* users and both-business users, mapping crosssell opportunities

Stratified Recommendations

We order users based on their predictions; prioritizing higher ranked recommendations based on propensity



Results



14.24% 15% 10.53% 9.47% 10% 7.44% 5% **USERS** AVG. WITH NEW 0.02% 0.01% **CROSS-SELL**

Recall@1

VALUE GAP ANALYSIS

Precision@1

CONTROL MODEL

SAR BiVAE Final Model (Post-processed BiVAE)

SHARE

5 p.p. Smoothing on seasonality

37%

ITEMS

Business Impact

ASSUMPTIONS

5.2% Purchased items impact

1.5 USD/item on average

250k Customers/campaign

BASELINE MODEL **EXPECTED VALUE**

► 108k USD/campaign

NEW EXPECTED VALUE PER CAMPAIGN

EFFICIENCY CAPTURE

50%

75% 100%

EXPECTED VALUE (USD)

126k 134k 143k

Next Steps

ARCHITECTURE

- Pipeline development Smoothing postprocessing logics
- Improving data quality, for less sparse datasets and accurate modeling
- Application of additional business rules

000

MODELLING

- Testing users level features with hybrid model alternatives once there's less sparse data
- Testing user-level features in the postprocessing similarity matching

DEPLOYMENT

- Additional testing opportunities
- Piloting once there's a proper architecture,
- Brainstorming further use cases for the Final Model