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Problem Statement

« FEMSA is one of Mexico’s largest holding companies, and a key
player in beverages and convenience in Latin America

* Project Sponsors: Paloma Gonzalez, Lorena Garza * Faculty Advisor: Jose Pacheco

« FEMSA's retail brand, Oxxo, has become the largest convenience
store chain in Mexico

« FEMSA's digital wallet, Spin, provides financial services and products
in store, where customers can pay their utility bills, buy phone top-
ups, and make deposits

_ To better understand the FEMSA ...to offer a smart
- FEMSA is now shifting to an integrated ecosystem, and as the customer’s cross-business recommendation for the ...maximizing their value.
company looks to generate synergies between businesses presence... customer’s next purchase...
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« Ourtraining dataset is balanced based on user transaction type >
(either only Premia, Spin or both verticals), on a 1:1:1 ratio for better
recognition of cross-selling opportunities

Estimate the expected
recurrence of each item
for each user

* We have 26 items from Oxxo, including macro-categories as candy

and groceries; and 20 items from Spin, including bill payments and
deposits, among others

Methodology
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Business Impact
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