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In Search of a Unicorn: Dynamic Agency with Endogenous

Investment Opportunities

Abstract: We study the optimal dynamic contract that provides incentives for an agent
(e.g., SPAC sponsor, VC general partner, CTO) to exploit investment opportunities/targets
that arrive randomly over time via a costly search process. The agent is privy to the arrival
as well as to the quality of the target and can take advantage of this for rent extraction
during the search stage and the ensuing production stage. The optimal contract provides
the agent with incentives for timely and truthful reporting via a time-varying threshold for
investment and an internal charge for the time spent on search. In the equilibrium, as time
elapses, the charge becomes progressively higher while the investment threshold progressively
lower, resulting in overinvestment at a time-varying degree. Our model generates empirically
testable predictions regarding internal innovations and project selection as well as external
investments such as M&As, hedge fund activism, VC investing, and SPACs, linking the
degree of overinvestment to observable firm and industry characteristics.

JEL classification: G31, D82, D83, D86, M11

Keywords: dynamic agency, endogenous search, project selection, overinvestment
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1 Introduction

Investment decisions are an important element of corporate operations. A growing stream of

literature (e.g., Bernardo, Cai, and Luo, 2001; Baldenius, 2003; Heinle, Ross, and Saouma,

2014; Bastian-Johnson, Pfeiffer, and Schneider, 2017) studies these decisions in settings

where the quality of the considered opportunities is only observable to the managers in

charge, thereby emphasizing adverse selection as a main friction. The typical advice for

achieving goal congruence in such setting is to impose a static and sufficiently high hurdle

of acceptable quality, which results in ex post underinvestment. Notably, a recurring theme

in this literature is that the presence of a business opportunity is given, and the timing of

the (one-shot) decision to invest or not is fixed.

In practice, both external and internal investment opportunities often arise and material-

ize over time and may demand a significant commitment of resources for their discovery and

selection. For instance, Sponsors of Special Purpose Acquisition Companies (SPACs) spend

months or years seeking out the most valuable private enterprises—commonly referred to as

“unicorns”—with which to merge. Chief Executive Officers (CEOs) embark on an enduring

quest to identify acquisition targets for maintaining corporate growth. General Partners and

Associates of venture capital (VC) funds scout for nascent startups primed for investment.

Managers of activist hedge funds engage in a pursuit of undervalued firms for intervention.

Chief Technology Officers (CTOs) from the high-tech sector invest their time and company’s

resources into researching and developing pioneering technologies. Chief Operating Officers

(COOs) and Divisional Managers consider multiple projects—a process that unfolds over an

extensive span of time—before singling out the one with the most auspicious prospects.

Furthermore, the decisions of when to invest in a given opportunity or end the search

process are neither exogenous nor made in a static environment: managers and investors

are aware that future opportunities may arrive if they do not invest immediately, but do

not necessarily know ex ante how many opportunities are available and what their quality

will be. Meanwhile, there is no need to abide by a fixed schedule that dictates the time

at which an investment decision has to be made. Consequently, the criteria for investment

as well as the decision whether to continue or abandon the search can all be dynamic and
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non-stationary, depending on the history of the managers’ search.

In this paper we study the implications of endogenous and dynamic search for opportu-

nities on investment decisions, and demonstrate that these features lead to novel predictions

under the optimal contract, such as overinvestment at time-varying degrees. We build a

dynamic agency model that involves two stages. In the first—search—stage, a principal

(e.g., headquarters or representative investor; referred to as “she”) contracts with an agent

(e.g., SPAC sponsor, VC general partner/associate, hedge fund manager, CEO, CTO, COO,

or divisional manager; referred to as “he”) to find investment opportunities (“projects” or

“targets”) that arrive randomly over time. The search requires spending of resources by the

principal, but the arrival and the quality of the target are privately observed by the agent.

The principal decides whether to seize the investment opportunity (and begin production) or

to terminate the search process. In the second—production—stage, the agent generates an

output that depends on the project quality. The principal’s objective is to optimally design

the contract that maximizes her total return net of the agent’s compensation and provides

incentives for the agent to report his private information truthfully.

Absent information frictions, the principal’s first-best strategy is to invest in the first

target that clears a constant and sufficiently high bar of quality (threshold) and never aban-

don the search. The information frictions in the second-best scenario, however, creates an

adverse selection problem that distorts the principal’s investment and production strategies.

In the production stage, the optimal contract takes the form of an output-sharing rule, under

which the agent keeps a fraction of the output as his compensation. To provide incentives

for truthful reporting of the target quality, the agent’s compensation must exceed his cost of

production effort in the form of information rent. Under the optimal contract the equilibrium

output increases with target quality, implying more information rents for better targets.

In the search stage, the optimal contract takes the form of a budget for search resources

combined with—as in the first-best—a threshold for investment. The principal transfers

resources to the agent continuously and subtracts them from the budget at a specified rate

(“charge”). Intuitively, this structure of the optimal contract arises because only the agent

observes the arrival and quality of the target. Since his information rent increases with target

quality, the agent is always tempted to conceal the arrived target and wait for a better one in
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the future. To provide the agent with the incentives to make not only accurate but also timely

report, the optimal contract grants the agent a finite budget with a progressively declining

balance and a threshold for investment. If the agent announces a target with quality that

clears the investment threshold, production takes place, and the agent is paid according

to the terms of the contract. Otherwise, the contract is terminated without payment to

the agent when the budget is exhausted. Thus, waiting becomes costly to the agent as it

increases the likelihood that no target that clears the investment threshold arrives before his

contract is terminated without pay.

Unlike the first-best scenario and the predictions of static models (e.g., Bernardo, Cai,

and Luo, 2001; Baldenius, 2003; Heinle, Ross, and Saouma, 2014; Bastian-Johnson, Pfeiffer,

and Schneider, 2017), the investment threshold, the internal charge for search resources, and

the balance of the agent’s budget are all endogenous and time-varying as a result of the

search history. Crucially, while the threat of termination is a necessary incentive device due

to the agent’s private information, it is also costly to the principal whose payoff comes solely

from the output of production. Therefore, conditional on maintaining proper incentives, the

investment threshold under the optimal contract reflects a balance between the benefit of

continuing the search (the prospect of high-quality targets arriving in the future) and the

cost of doing so (the increasing likelihood of termination when the budget is exhausted).

Early on in the search, the investment threshold is high because the likelihood of contract

termination is not too great of a concern. As time elapses and in the absence of a suit-

able target, the balance of the resource budget declines while the likelihood of termination

increases. Thus, the investment hurdle decreases over time to expedite the transition to

production. Eventually, when the balance of the resource budget becomes too low and ter-

mination becomes imminent, the investment threshold reaches its minimal level such that

all targets regardless of their quality trigger the investment. Because such search cost is

always present and progressively higher, the optimal investment threshold induced by the

agency frictions is always below the first-best level and progressively decreases, resulting in

overinvestment at time-varying degrees.

We also extend the model to incorporate two additional features that arise naturally in

practice. First, we allow the agent to divert the search resources to generate private benefits,
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in which case no target would arrive. This is equivalent to allowing the agent to shirk during

search, generating a moral hazard problem that interacts with the adverse selection problem

in the baseline model. To provide the incentives for search effort, the agent’s continuation

utility must decline at a minimal rate commensurate to his private benefit from shirking.

Consequently, this limits the maximal level of quality the principal optimally chooses to

invest in, exacerbating overinvestment. Our second extension introduces dynamics in the

production stage. We assume the target quality determines only the initial productivity,

which afterwards evolves over time subject to time-varying shocks. The evolution path of

the productivity is privately observed by the agent and the principal dynamically adjusts

her production policies based on the agent’s reported productivity. We find that this exten-

sion retains the main theoretical implications of the baseline model while delivering several

additional insights.

Our model generates empirically testable predictions regarding special purpose acquisi-

tion companies (SPAC), mergers and acquisitions (M&A), venture capitalists (VC), hedge

fund activism (HFA), internal innovation, and project selection. There is substantial empir-

ical evidence for overinvestment in these markets, which is often interpreted as an indication

of the agent’s empire-building preference and a lack of internal discipline.1 This paper offers

an alternative explanation based on optimal contracting under agency frictions and develops

testable hypotheses that link overinvestment to observable firm and industry characteristics.

We expect that the degree of overinvestment is positively correlated with the number of firms

and frequency of activities in these markets, the incentive power of executive contracts, as

well as the geographical proximity, executive connections, stock liquidity, analyst coverage,

and institutional holdings of the targets.

2 Related Literature

Our study is related to the literature studying investment decisions in principal-agent frame-

works (e.g., Bernardo, Cai, and Luo, 2001; Baldenius, 2003; Baldenius, Dutta, and Re-

ichelstein, 2007; Dutta and Fan, 2009; Heinle, Ross, and Saouma, 2014; Bastian-Johnson,

1We review the empirical evidence on overinvestment and discuss its interpretations in Section 5.
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Pfeiffer, and Schneider, 2013, 2017). The agent has private information that is related to the

quality or return on investment, and the optimal contract provides incentives for the truth-

ful reporting of such information. In the absence of other frictions, this typically results in

capital rationing, or underinvestment compared to the first-best. Several studies (e.g., Antle

and Fellingham, 1990; Fellingham and Young, 1990; Arya, Fellingham, and Young, 1994;

Baiman, Heinle, and Saouma, 2013) consider settings with multiple stages where the invest-

ment decisions of later stages depend on the agent’s report in the previous rounds. However,

the number of rounds is pre-determined, and the set of available investment opportunities

is given in each round. Our work contributes to this literature by incorporating dynamic

search and random arrival of investment targets of unknown quality, thus introducing several

novel features compared to the existing studies on this topic. Most importantly, the length

of the search period is stochastic and endogenous, determined by the search history. The

principal must provide incentives for timely and truthful reporting of the arriving targets

and their quality. The resulting optimal contract features an investment hurdle below the

first-best that progressively decreases as the search continues. That is, our model predicts

overinvestment at time-varying degrees.

Several recent studies incorporate dynamics in agency-based investment models with dif-

ferent features and implications. For example, Malenko (2019) explores the optimal design of

a dynamic capital allocation process in which an agent (division manager) privately observes

the arrival and quality of investment projects. Different from us, each project is a take-it-or-

leave-it opportunity with an instant return if the headquarters undertake it, and there is an

auditing technology (for the most part) that perfectly reveals the quality of the project at a

cost. The agency friction arises from the agent’s empire-building preference: he is inclined to

exaggerate the quality of the project in order to induce a larger investment. As a result, his

continuation utility drifts upward in the absence of any reported project and jumps down-

ward when an investment project is taken without auditing to cancel out his private benefit

from the investment. All projects, regardless of their quality, receive investment, and there

is no termination. However, the principal controls the scale of each investment, with larger

projects subject to more severe agency frictions in mind. Consequently, the optimal contract

always induces underinvestment (in terms of scale) relative to the first-best. In contrast, in
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our model the agent’s continuation utility drifts downward in the absence of a suitable target

and jumps upward when investment is made, and the search must be terminated within finite

time to provide the agent with the incentives for timely reporting. Additionally, only one

target can be taken, and the principal controls the threshold of quality for such investment.

Consequently, the optimal contract always induces overinvestment (in terms of the scope of

quality) and yields different empirical implications.

Varas (2018) studies a dynamic model of short-termism in which the agent’s private in-

formation is binary: the agent can either spend effort and time to discover a value-enhancing

good project, or pass off a value-destroying bad project which is always available. The prin-

cipal uses a contract with decreasing compensation as the incentive for effort. However, to

prevent short-termism, the contract holds the compensation stationary at some point and

switches the incentive to random termination. In the equilibrium, the bad project is never

invested, i.e., short-termism never occurs. Our model differs in that there is a continuum of

private information: the arrival and quality of the investment target is observable only to the

agent. Thus, the optimal contract provides time-varying incentives for the truthful reporting

of his private information at different points in time. As a result, the principal endogenously

becomes more “short-termist” and progressively permits investment in lower-quality targets

over time. Also, while the contractual relationship in Varas (2018) continues after the in-

vestment project is chosen, the agent takes no action in that period and cannot influence

the project output. In contrast, the agent in our model is also in charge of production from

the chosen project and can manipulate the project output to extract more rent.

More broadly speaking, our model is also related to the literature of dynamic contracting

models with Poisson jumps (e.g., Biais, Mariotti, Rochet, and Villeneuve, 2010; Hoffmann

and Pfeil, 2010; Piskorski and Tchistyi, 2010; DeMarzo, Fishman, He, and Wang, 2012). The

most closely related studies include Green and Taylor (2016), Curello and Sinander (2021),

Madsen (2022), and Mayer (2022), in which the agent can, through effort, observe a private

signal that is valuable to the principal. The optimal contract provides incentives for the

agent to exert the effort to uncover the signal and to report it as soon as it arrives. While

we consider an extension of our baseline model that includes a similar moral hazard problem

on search effort in Section 6.1, our paper differs from these studies in two dimensions. First,
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in addition to the arrival time, the agent also privately observes the quality of the private

information and must be incentivized to truthfully convey both the arrival and the quality

to the principal. Second, the contracting relationship does not end with the disclosure of the

private information. The value of the information manifests in a production process, during

which the agent can continue to utilize his private information to extract rents.

3 Economic Setting and Benchmark

Below we describe the model ingredients (in Section 3.1), discuss some of our assumptions

(in Section 3.2) and present the first-best benchmark (in Section 3.3).

3.1 Model Description

We consider a principal (e.g., firm headquarters or a representative owner/investor; hence-

forth referred to as “she”) contracting with an agent (e.g., SPAC sponsor, VC general part-

ner/associate, hedge fund manager, CEO, CTO, COO, or divisional manager; henceforth

referred to as “he”). The principal has deep pockets while the agent is protected by limited

liability. Both parties are risk-neutral with no discounting, and their outside options are

normalized to 0.

There are two stages—search and production—and time is continuous. During the search

stage, the principal pays a flow cost δ (e.g., working capital), and targets arrive, one at a

time, via a Poisson jump process Nt with intensity λ. This could represent a CTO searching

to adopt a new technology, an activist hedge fund manager seeking an undervalued firm

for intervention, a VC general partner looking for a promising startup, or a SPAC sponsor

hunting for a valuable private firm to merge with. Each target is characterized by its quality

θ, which follows a Pareto distribution with cumulative distribution function F (θ) = 1 −(
θmin

θ

)κ
and probability density function f(θ) =

κθκmin

θκ+1 . The distribution scale parameter is

positive, θmin > 0, and the shape parameter is sufficiently large, κ > 2.2 Importantly, only

the agent observes the arrival of targets and their quality θ. This can be interpreted as only

the agent possesses the skills and expertise to recognize an investment opportunity at the

2These are technical assumptions that we discuss in Section 3.2.
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moment it is available and assess its value. The principal decides whether to invest in the

target based on information reported by the agent. The length of this stage is endogenous:

the search ends either when the principal invests and moves on to the next (production)

stage, or when the contract is terminated.

During the production stage, the agent generates output from the target chosen by the

principal during the previous stage. We use the term “production” loosely to refer to any

utilization of the discovered target (e.g., implementation of the innovative technology, opera-

tion of the merged firms, revamping of the target company, etc.). The production technology

is y(θ, e) = θe, where e is the agent’s unobservable production effort exerted at a quadratic

personal cost h(e) = e2/2. Similar to the first stage, the target quality is privately observed

only by the agent. The output y, however, is observable by the principal and can therefore

be contracted on.

The main agency friction of the model is adverse selection stemming from the agent’s

private information about the arrival and the quality of each target. In particular, the

unobservable effort in the production stage does not introduce an independent moral hazard

problem. It only provides cover for the agent so that the true quality of the target cannot

be inferred with certainty based on the observable output.3

In line with prior literature, a contract C between the principal and the agent consists

of the principal’s investment and production policies, and the associated compensation to

the agent. Even though the contract is signed at the onset of the game it can be separately

defined in terms of incentives related to the search and incentives related to the production.

The part related to the search stage specifies the set of targets that will be invested in, the

reward for the agent for announcing the arrival of the target, and the condition under which

the contract is terminated. The part related to the production stage specifies how the agent

will be compensated based on the observed production. A contract is incentive-compatible

if the agent finds it optimal to always announce his private information truthfully.

3In other words, although the production stage features both hidden information and hidden action, the
agent only has one degree of freedom in his choices, a point that will become clearer as we present the
solution of the model in Section 4.1.
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3.2 Discussion of Assumptions

We now discuss in detail several simplifying assumptions of the model and explain why they

are not crucial for our analysis.

1. Discounting. Our model assumes that there is no discounting for the principal and the

agent. This assumption is common among models in which the arrival of information

follows a Poisson process (e.g., Green and Taylor, 2016; Mayer, 2022). Discounting

implies that the principal prefers earlier resolutions, which further distorts her invest-

ment threshold downward (beyond the one predicted by our model). Except for this

result, discounting usually adds little economic intuition in these types of models but

a substantial degree of algebraic complexity.

2. Continuous time. The assumption that time is continuous allows for a more elegant

analysis. A setting with discrete time leads to several analytical complications (such

as the need for randomized termination) but does not qualitatively change our results.

3. Pareto distribution. We assume that the target quality θ follows a Pareto distribution

because of its broad applications in economics and its analytical convenience. In par-

ticular, this distribution belongs to the power-law family and is descriptive of many

economic variables and activities in practice (e.g, Gabaix and Landier, 2008). Further-

more, the distribution has two analytical advantages. First, the inverse hazard rate

[1 − F (θ)]/f(θ) = θ/κ is a linear function of θ. This significantly simplifies the proof

of Proposition 1 and all subsequent analyses. Second, a Pareto distribution truncated

from below at an arbitrary point x > θmin is also a Pareto distribution with the same

shape parameter and the new scale parameter x. This is vital for tractability. The

requirement κ > 2 is merely technical and implies a sufficiently thin right tail of the

distribution to ensure a finite variance of θ and a finite solution to the first-best (see

footnote 5 for more details).

4. Production technology. Our model assumes that the production technology is y(e, θ) =

eθ. This implies that effort and project quality are perfect complements and achieves

two useful simplifications. First, in equilibrium, production effort is never shut down
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regardless of target quality.4 Second, while the agent can misreport the investment

quality, he cannot generate output without a project (e.g., from a phony acquisition

target or without adopting a new technology).

In summary, the assumptions discussed above facilitate tractability and are not crucial

for our results. The predictions of the model remain qualitatively unchanged if we relax any

of these assumptions (e.g., switch to discrete time, allow discounting, consider a dynamic

production process, use an alternative distribution for θ and/or production function for y).

3.3 First-Best Benchmark

When all information is public, the first-best effort and output in the production stage

maximize the social surplus from production. i.e.,

max
e

y − h(e) = θe− h(e). (1)

The first-best effort and output,

eFB = θ, (2)

yFB = θ2, (3)

are both increasing functions in θ. The agent is only compensated for his cost of effort, and

the payoff to the principal is V FB
2 (θ) = θ2/2.

The search stage under the first-best scenario represents a standard bandit problem.

Let ΘFB denote the set of targets that will be invested in and V FB
1 denote the principal’s

expected value at the outset of the search stage. The following lemma summarizes the

first-best investment policy:

Lemma 1 Under the first-best scenario, ΘFB = {θ : θ ≥ xFB}, where

xFB =

[
λθκmin

δ(κ− 2)

] 1
κ−2

. (4)

4In contrast, if the production technology is linear, e.g., y = e+θ, then under the optimal contract, effort
may be shut down if target quality θ is sufficiently high.
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The principal’s first best expected payoff at the beginning of the search stage is

V FB
1 (xFB) =

κ
(
xFB

)2
2(κ− 2)

−
δ
(
xFB

)κ
λθκmin

. (5)

The optimal strategy of the principal under the first-best scenario is to finance the search

with a constant minimal (cutoff) quality xFB.5 Because xFB also determines the expected

duration of the search, Lemma 1 suggests that, on average, the principal expects to wait

longer in the first-best scenario if there are many opportunities on the market (high λ) or if

searching is cheap (search flow cost δ is low).

4 Optimal Contract Under Asymmetric Information

We now analyze the optimal contract when the arrival and quality of the targets are the

agent’s private information. To do so, we consider separately (in backward order) the terms

that provide incentives to the agent in each of the stages.

4.1 Production Stage

As a starting point, we consider the following reduced problem without the search stage: the

agent is endowed with a target of quality θ that is unobservable by the principal. The agent

has reservation utility Wτ− , which in this reduced problem is given (but in the full-fledged

problem represents the utility carried over from the search stage). The principal must design

a screening contract that solicits truthful reporting of θ during the production stage while

maximizing her payoff, which is the output net of the agent’s compensation.

Based on the Revelation Principle, we can—without loss of generality—consider the

screening contract as a direct mechanism: the agent reports his type θ̂ and receives an

output target y(θ̂) and associated compensation w(θ̂) if and only if the output target is

produced.6 Given the contract, the agent’s objective is to maximize his compensation net of

5Equations (4) and (5) illustrate the need to assume κ > 2. Otherwise, xFB and V FB
1 are not well-defined.

6Such contract is feasible because, given θ, there is no uncertainty or noise in the production technology.
Note that this contract can be alternatively written in a standard “pay-for-performance” form: a function
w(y), under which the agent is free to produce any level of output y and receive the corresponding wage
w(y), and no reporting is necessary. These two formulations are equivalent because in the equilibrium, both
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his (production) effort cost:

R(θ) = max
θ̂

w(θ̂)− h(e) (6)

subject to the constraint

e = y(θ̂)/θ, (7)

because he needs to exert the necessary effort to produce the required level of output y(θ̂) in

order to receive compensation. This constraint illustrates that although effort is unobservable

in the production stage, the main underlying agency friction is adverse selection: effort

merely provides a cover for the agent’s report θ̂ so that his true type θ remains hidden.

The contract is incentive compatible if and only if

θ = argmax
θ̂

w(θ̂)− h

(
y(θ̂)

θ

)
. (8)

When (8) is satisfied, R(θ) is known as the agent’s information rent : the amount of utility

(in excess of his reservation utility) that he must receive in order to truthfully reveal his

private information.

Because the principal does not observe θ, her objective is to maximize the expected

output net of the agent’s compensation. The expectation is taken over the distribution of

θ, which in equilibrium is the result of the investment policy to which the principal had

committed before the search and production stages. Section 3.3 showed that in the first-

best scenario this investment policy is a threshold one. Our next result establishes that the

investment policy under asymmetric information is also a threshold ; we denote it by x.7

Lemma 2 Under asymmetric information, it is not optimal for the principal to adopt an

investment policy that is not a threshold x defined as Θ = {θ : θ ≥ x}.

the output target y(θ̂) and the wage w(θ̂) are strictly increasing in the agent’s reported type θ̂, thus creating
a one-to-one mapping between output and wage. Remark 1 below demonstrates such equivalence in detail.
Following the accepted standard in the literature, we consider the direct mechanism that involves reporting
because of its transparency in demonstrating the incentive power of the contract.

7This result is more general and does not depend on the presence of a search stage prior to production.
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Intuitively, if a target of quality θ̄ will trigger investment under some incentive-compatible

contract, the principal can always induce truthful reporting and thus invest in all targets with

better quality (i.e., θ > θ̄) by setting the output target to be y(θ̄) and the wage to be w(θ̄)

for those targets.8 Therefore, the principal’s expected net return must be at least weakly

increasing in target quality, and excluding high-quality targets is sub-optimal. As a result,

the principal’s maximal payoff from the screening contract can be written as V2(x) −Wτ− ,

where V2(x) solves

V2(x) = max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− w(θ)]

(
κxκ

θκ+1

)
dθ (9)

= max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− h(e(θ))−R(θ)]

(
κxκ

θκ+1

)
dθ (10)

subject to the IC condition (8).9 In other words, given the investment policy x, V2(x)

captures the principal’s expected payoff from production under the incentive-compatible

screening contract with optimally designed output-compensation combinations.

Deriving R(θ) and V2(x) represents a static mechanism design problem to which the

solution is summarized as follows:

Proposition 1 Let γ ≡ κ
κ+2

< 1. Given any investment threshold x ≥ θmin, the optimal

screening contract in the production stage has the following properties:

– The agent’s information rent from a target of quality θ ≥ x is given by

R(θ) =
γ2

2
(θ2 − x2); (11)

– The principal’s expected payoff from production is given by

V2(x) =
γκ

2(κ− 2)
x2; (12)

– The optimal output is y∗ = γθ2 and the production effort is e∗ = γθ.

8This is incentive compatible because it requires less effort from the agent to produce y(θ̄) when θ > θ̄.
9The term κxκ

θκ+1 represents the distribution of θ given the investment threshold x.
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The agent’s information rent is a quadratic function of target quality θ and the principal’s

expected payoff is a quadratic function of the investment threshold x. In particular, (11)

implies that themarginal rent R′(θ) = γ2θ is a linearly increasing function of target quality θ.

This is known as the slope condition which is essential in the presence of adverse selection for

ensuring incentive compatibility, that is, the truthful reporting of θ. Meanwhile, compared

with the first-best level of effort eFB in (2) and the first-best level of output yFB in (3),

adverse selection distorts both the optimal effort e∗ and output y∗ downward by a constant

fraction: 1− γ = 2/(κ+ 2). Intuitively, a higher κ corresponds to a lower variance in θ and

therefore, less information asymmetry.

Given x, equation (11) implies that the conditional expectation of the information rent

the agent can receive is

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

γ2

2

(
θ2 − x2

)( κxκ
θκ+1

)
dθ =

γ2x2

κ− 2
. (13)

The closed-form expressions for U(x) and V2(x) greatly simplify the design of the optimal

contract in the search stage in the next section.

Remark 1 The screening contract in Proposition 1 can be implemented via a simple output

sharing rule

w(y) = γ(y − γx2) +
γ2x2

2
. (14)

Under this rule, if the agent produces a minimal amount of output γx2, he receives a basic

wage γ2x2

2
which exactly offsets his effort cost. Then, for every additional unit of output the

agent produces, he receives γ fraction of that as his compensation. This simple output sharing

rule represents an indirect mechanism, under which the agent does not need to report his type

and can freely produce any level of output he desires. In comparison, Proposition 1 is derived

based on a direct mechanism, under which the agent reports θ̂ and receives an output target

y(θ̂) and the corresponding wage w(θ̂). However, these two mechanisms are equivalent (as

a result of the revelation principle), because they are both incentive compatible and deliver

the exact same rent R(θ) and the same expected payoff to the principal. Thus, our choice of
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formulating the solution to the adverse selection problem in the production stage as a direct

mechanism is without loss of generality.

4.2 Search Stage

The analysis in the previous section solves the optimal screening contract that induces truth-

ful reporting of target quality from the agent, if the existence of the target is known. During

the search stage, however, the arrival of a target is random and only observable to the agent.

Moreover, Proposition 1 shows that R(θ), the information rent for truthful reporting, is an

increasing function, meaning that the agent receives higher rent from a target of higher qual-

ity. This gives the agent the incentive to conceal the arrival of a target from the principal

and wait for a better one in the future. Since the support of θ is unbounded, the agent always

prefers to wait. To deter this, the agent must be given the proper incentives to report the

arriving targets both truthfully and in time. This is the main objective behind the optimal

contract in the search stage, which is derived below.

Similar to standard dynamic agency models (especially those set in continuous time

such as DeMarzo and Sannikov, 2006; Biais, Mariotti, Plantin, and Rochet, 2007; Sannikov,

2008), we find that incentives for timely reporting in our model can be provided in the form

of promised future compensation to the agent. Specifically, let {Ct}t∈[0,τ ] denote the com-

pensation to the agent during the search stage, τ denote the stopping time either because of

transition to production stage or contract termination, andWτ denote the terminal payment.

The contract can be characterized using the agent’s continuation utility Wt, defined as

Wt = E

[∫ τ

t

dCs +Wτ

]
. (15)

We can solve the optimal contract that provides incentives to the agent during the search

stage as follows. First, because all players are equally patient, any intermediate compensation

can always be delayed at no cost. Given that the production stage is static without noise

or risk, it is without loss of generality to accrue all payments until the output is produced.

That is, under the optimal contract, the agent is paid if and only if the contract moves to

the production stage and the agent produces the required output (i.e., dCt = 0 for all t < τ
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and Wτ = 0 if the contract is terminated without production). The following proposition

thus characterizes the dynamics of the agent’s continuation utility in the search stage:

Proposition 2 Let xt denote the investment threshold set by the optimal contract at time

t, the agent’s continuation utility Wt evolves according to dWt = U(xt)dNt − J(xt)dt, where

J(xt) =

[
λ

(
θmin

xt

)κ]
U(xt) =

(
λγ2θκmin

κ− 2

)
x2−κ
t . (16)

The contract is terminated if Wt = 0.

Similar to standard models with Poisson search, Wt jumps upward and the firm moves on

to the production stage if a suitable target arrives. Here, a target is suitable if its quality

clears the threshold of investment, i.e., θt > xt. Otherwise, Wt drifts down at rate J(xt)

if no target arrives or is reported. If a sufficiently long time has passed without reporting,

the search terminates at Wt = 0, and the agent receives no payment. Put differently, to

dissuade the agent from waiting for a better target, the agent must be worse off waiting.

The contract achieves this using the threat of termination without pay. Such threat becomes

more imminent, that is, the likelihood of termination increases, as time passes by without a

report of a suitable target. Consequently, Wt drifts down over time and jumps up only if a

target of sufficient quality is reported.10 However, different from the standard models, the

adverse selection in the production stage in our model implies thatWt jumps up by a specific

value dictated by the solution to the optimal screening contract (i.e., Proposition 1). Given

the investment policy xt, U(xt) is the agent’s expected utility reward (i.e., the expected size

of the upward jump in Wt) if a suitable investment target arrives. Multiplying that by the

probability that a suitable target arrives, λ
(

θmin

xt

)κ
, yields J(xt) in (16).

The dynamics of the contract in Proposition 2 can be implemented by assigning the agent

a “budget” for the spending of search resources. The budget has a balanceWt, and decreases

at rate J(xt)dt until either the agent reports the arrival of a suitable target or the budget is

10Wt does not jump if the agent reports a target that falls below the quality threshold xt. Such target
does not trigger investment, and thus the agent’s report is not verifiable. Moreover, an upward jump in
Wt implies a faster decline of Wt, which increases the likelihood of contract termination and is costly to
principal. Therefore, it is optimal for the principal to make payments only when production occurs.
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depleted. The former triggers production and compensation as described in Proposition 1.

The latter triggers termination of the search process.

The principal has two controls when designing the optimal contract: the investment

threshold xt, and the terminal compensation Wτ . Her expected payoff at any time t ∈ [0, τ ]

under the optimal contract, denoted as V1,t, solves

V1,t = E

[∫ τ

t

−δds+ yτ −Wτ

]
, (17)

subject to the IC constraints (8). It holds that yτ = y if production takes place, and yτ = 0 if

the contract is terminated without production. The principal pays for the search cost δ. She

retains the production output y if investment is made, but has to pay terminal compensation

Wτ to the agent. The analysis so far has pinned down the optimal, incentive compatible

terminal compensation: if a suitable target can be found, the agent receives an extra reward,

which is U(x) in expectation. Otherwise, if the contract terminates without production,

he receives no payment. Thus, the ensuing analysis focuses on characterizing the optimal

investment policy xt.

Proposition 2 implies that the principal’s payoff under the optimal contract can be sum-

marized as a function of the agent’s continuation utility, or V1(W ), which solves the following

Hamilton-Jacobi-Bellman (HJB) equation with x being the only control variable:

0 = max
x

−δ − λ

(
θmin

x

)κ

U(x)V ′
1(W ) + λ

(
θmin

x

)κ

[V2(x)−W − V1(W )]. (18)

The first term represents the search cost. The second term stems from the drift of dWt, and

the third term represents the change in the principal’s payoff if a suitable target is found

and the contract moves into production.11

11Conditional on moving into production, the principal’s final payoff is the output y net of the wage w(θ)
paid for production and the agent’s residual utility W carried over from the search stage. The former can be
further divided into the compensation for the agent’s production effort h(e) and his information rent R(θ),
all embedded in the definition of V2(x) in equation (10). Put differently, the principal’s final payoff can be
written as y −R− h(e)−W , where the first three terms are captured (in expectation) by V2.
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Rearranging terms, the HJB equation can be conveniently written as

V1(W ) = max
x

V2(x)−W − U(x)V ′
1(W )− δ

λ

(
x

θmin

)κ

. (19)

The tradeoff faced by the principal when setting the optimal investment threshold is as

follows: A higher x yields a higher expected payoff once a suitable target arrives: V ′
2(x) > 0,

as seen in (12). The cost, however, is two-fold. First, targets with high quality arrive at a

lower rate which leads to higher search cost in expectation, the last term in (19). Second,

once a target arrives, the agent is given a higher reward to truthfully reveal the target quality:

U ′(x) > 0, as seen in (13). This higher reward must be accompanied by a faster decline of

W to maintain W as a martingale, which increases the likelihood of contract termination.

The optimal choice of threshold x can be obtained by the first-order condition:

V ′
2(x)− U ′(x)V ′

1(W )−
(
d

dx

)[
δ

λ

(
x

θmin

)κ]
= 0. (20)

The first term is positive, because x increases the expected payoff for the principal in the

production stage. The third term is negative, because x increases the expected time to wait

and thus the expected search cost. The middle term captures the marginal continuation

utility and its sign depends on W . When W is large, V ′
1(W ) < 0, because the promised

compensation to the agent lowers the principal’s payoff if a suitable target arrives and the

search ends. When W is small, V ′
1(W ) > 0, because the primary concern for the principal

is the likelihood of contract termination, which increases as W declines. Substituting V2(x)

from (12) and U(x) from (13) into (20) yields the optimal investment policy:

x(W ) =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

. (21)

The optimal investment threshold is increasing in the agent’s continuation utility, x′(W ) >

0.12 Because Wt drifts down over time, the optimal investment strategy is to adopt a pro-

gressively lower threshold for the quality of the arriving targets worth investing in.

12Technically speaking, this is because V1(W ) is a concave function, i.e., V ′′
1 (W ) < 0, which is a standard

feature of dynamic contracting models and is visualized in Figure 1.
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Meanwhile, θmin represents the lowest investment threshold that the principal can set.

Substituting x = θmin into (21) implies that x(W ) = θmin for all W ≤ W , where W solves

V ′
1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
. (22)

That is, when W is sufficiently low, the optimal policy is to invest in the next target that

arrives, regardless of its quality. This maximizes the probability that the contract moves to

the production stage before it is terminated.13

Altogether, the optimal contract during the search stage can be summarized in the fol-

lowing proposition:

Proposition 3 Under the optimal contract, the principal’s value function V1(W ) solves the

HJB equation (18) subject to the boundary condition V1(0) = 0. The optimal investment

policy x(W ) is given by

x(W ) =

θmin, if W ≤ W[(
1−

(
2γ
κ

)
V ′
1(W )

) (λγθκmin

δ(κ−2)

)] 1
κ−2

, if W > W

(23)

where W is given by (22). x′(W ) > 0 for all W > W .

Figure 1 illustrates the value function V1(W ) and the optimal investment policy x(W ).

Without any further constraint on the agent’s initial outside options, Wt optimally starts

at W0 = W ∗ where V1(W ) is maximized, and drifts to the left until either production or

termination occurs. Figure 1 also plots the first-best investment policy xFB and demonstrates

the following result:

13The result that all targets trigger production whenW is sufficiently low relies partially on the assumptions
that all targets, regardless of their quality, generate positive returns to the principal and require time to
be discovered. The former can be justified if the principal has a common sense of the basic properties of
investment opportunities worth taking (e.g., firms with strong growth history and healthy balance sheet), and
the latter can be interpreted as “no free lunch” in the financial market. If, instead, the θmin target represents
a “default” option that is always immediately available, then when W is sufficiently low, the principal will
intuitively abandon the search by resorting to the default option in lieu of contract termination. If θmin < 0,
or if there is a substantial fixed cost for production, then the optimal investment policy may exclude some
low-quality targets even when W is low and termination is imminent. If θmin is always available and low-
value, the optimal contract may involve random termination in order to peg W at a sufficiently high level
to prevent the agent from exploiting this low-value default option, such as the case studied in Varas (2018).
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Corollary 1 It holds that x(W ) < xFB for all W .

Figure 1: The Principal’s Value Function and The Optimal Investment Policy
The left panel of this figure plots the principal’s value function V1(W ) under the optimal contract. The right

panel plots the optimal investment threshold x(W ) according to Proposition 3 and the first-best investment

threshold xFB . W is defined according to (22), and W ∗ ≡ argmaxW V1(W ) represents the point at which

V1(W ) is maximized. Parameter values are λ = 2.5, κ = 4.25, δ = 1.1.

Combining the observations that x(W ) is increasing in W and the latter drifts over time, we

can immediately show:

Corollary 2 The optimal investment policy x(W ) is progressively lower over time.

To reduce the likelihood of contract termination, the principal reduces the investment thresh-

old. When W is sufficiently low, all targets trigger production regardless of their quality.

When W is larger, the concern for termination is somewhat eased but is never eliminated

because there is a strictly positive probability of contract termination regardless of how large

W is. Hence, the optimal investment threshold in the presence of agency frictions is always

below the first best, i.e., firms overinvest. The threshold increases in W , which in turn

decreases in time. Thus, overinvestment becomes progressively more severe.

Notably, a progressively decreasing investment threshold x also implies that the speed

at which the agent’s budget balance decreases, J(x), is accelerating over time. One way the

principal can control the agent’s budget balance is to internally charge him p = J(x)/δ for

the resources spent in the search process. A higher J(x) implies a higher p. Since J(x),

given in (16), is a decreasing function of x, Corollary 2 implies the following result:
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Corollary 3 The internal charge for search resources, p(W ), is progressively higher over

time.

The charge in Corollary 3 can exceed one for a large set of parameter values. In this case,

we predict that firms may impose a charge that is higher than their marginal cost, a result

that is consistent with Baldenius, Dutta, and Reichelstein (2007).

In summary, the optimal contract providing incentives for the search stage can be imple-

mented via a resource budget combined with a time-varying investment threshold/hurdle.

Resources spent for search are subtracted from that budget at a (time-varying) rate com-

mensurate with the search history. Early on in the search, the investment hurdle is high

and the charge for resources is low, implying a slow decrease of the budget balance. As time

elapses and in the absence of a suitable project, the principal optimally lowers the investment

hurdle to expedite the transition to production while raising the charge to maintain proper

incentives for truthful and timely report of the arriving target. These dynamics are the

result of balancing the benefit of search (the prospect of high-quality projects arriving in the

future) with the cost of doing so (the threat of termination when the budget is exhausted).

4.3 Discussion of Investment Distortions

One of our main results is overinvestment—it differs from those in prior studies that also

feature adverse selection in project choices. In this section we illustrate how such result

arises using a stylized example to which our model can be related.

Consider a generic production technology characterized by the output function y(θ) and

the cost function c(θ). Both are weakly increasing functions of θ, which measures the quality

or type of the project. A risk-neutral principal, who bears the cost of production, contracts

with a risk-neutral agent, who operates the technology and thus may have superior informa-

tion about the value of θ. In such case of asymmetric information, the principal only knows

that θ is drawn from a pool of projects characterized by a distribution function F (θ) with

unbounded support. There are two types of project selection problems in this generic setup:

Problem I: The agent draws a single project out of the pool of projects, and the prin-

cipal’s decision is to invest or not. That is, the principal faces a one-shot, take-it-or-leave-it
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decision for a given project. Investment incurs the production cost c and yields the output

y, and no-investment yields zero net payoff. This is the standard static investment model

that is commonly used in prior studies with varying details (e.g., Baldenius, 2003; Baldenius,

Dutta, and Reichelstein, 2007; Bastian-Johnson, Pfeiffer, and Schneider, 2013).

We begin with analyzing the first-best project choice, denoted by xFB, when θ is observ-

able. A common result is that xFB is a cutoff that represents the minimal quality of project

that triggers investment. That is,

xFB = min{θ : y(θ)− c(θ) ≥ 0}. (24)

In other words, y(xFB) = c(xFB), and all projects with θ ≥ xFB are undertaken. This result

holds as long as y(θ)− c(θ) is weakly increasing in θ.

Now suppose only the agent sees the true value of θ and must be given incentives to

report it truthfully to the principal. This creates a canonical adverse selection problem

which, depending on the specific assumptions, yields different incentive-compatible solutions.

However, a typical result of this adverse selection friction is that the equilibrium output is

lower than that under the first-best. For the purpose of illustration, we assume that it reduces

the principal’s payoff from each project to γy(θ) where γ < 1. This can be interpreted as

1−γ fraction of the output must be paid to the agent as his information rent in exchange for

truthful reporting.14 Then, the principal’s optimal choice under adverse selection, denoted

by x∗, solves

x∗ = min{θ : γy(θ)− c(θ) ≥ 0}. (25)

In other words, γy(x∗) = c(x∗). The question of interest is how x∗ compares to xFB. To

answer that, define the cost-to-output ratio function ϕ(θ) = c(θ)/y(θ). As a result, we have

ϕ(xFB) = 1 and ϕ(x∗) = γ < 1. The assumption that y(θ)− c(θ) is weakly increasing in θ,

14In our model above, this is indeed the optimal screening contract (see Proposition 1 and Remark 1), with
γ = κ/(κ+ 2). This results from the combination of multiplicative production for y and Pareto distribution
for θ. Other combinations of assumptions can result in different γ. However, the specific value of γ and
whether it is a constant are not critical. The basic intuition in this section is intact as long as γ(θ) < 1 for
all θ, which is a standard result of most adverse selection models.
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which is necessary for x∗ and xFB to represent investment cutoffs, implies that ϕ(θ) must be

decreasing in θ.15 Then, we have x∗ > xFB, which implies underinvestment.

Problem II: Now imagine that instead of a one-shot, take-it-or-leave-it decision for a

given project, the principal is presented with the whole set of projects and selects the optimal

one to investment in. In the first-best, her optimal choice solves

xFB = argmax
θ

y(θ)− c(θ). (26)

When the objective function y(θ) − c(θ) is twice differentiable and globally concave the

solution is given by the first-order condition y′(xFB) = c′(xFB). Assuming once again that

adverse selection reduces the output by γ < 1, the principal’s optimal choice x∗ now solves

x∗ = argmax
θ

γy(θ)− c(θ). (27)

The solution satisfies γy′(x∗) = c′(x∗). The question of interest is still how x∗ compares

to xFB. Analogously, we can define the marginal cost-to-output ratio ψ(θ) = c′(θ)/y′(θ)

and the assumption of global concavity implies that the marginal cost must increase faster

than the marginal revenue, which implies that ψ(θ) must be increasing in θ.16 Consequently,

x∗ < xFB, which implies overinvestment.

Comparison and discussion: In both problems, adverse selection effectively reduces

the principal’s payoff from a given project. In Problem I, the principal faces a single take-

it-or-leave-it opportunity drawn from the pool of projects, and the optimal choice is made

by finding the point where the principal’s participation constraint (y − c ≥ 0) binds. Con-

sequently, we refer to this as a “participation” problem. In Problem II, the principal faces

the entire set of opportunities and makes her optimal choice by optimizing over the benefits

and the costs, which we refer to as an “optimization” problem. Using these definitions we

reach the following observation:17

15A typical and widely-used example is that y(θ) is strictly increasing in θ while c(θ) is a constant (e.g.,
a fixed cost for investment).

16A typical and widely-used example is that y(θ) is a concave function and c(θ) is linear. In our model
(e.g., by the HJB equation (19)), y(·) ≈ (·)2 is convex while c(·) ≈ (·)κ with κ > 2, which is more convex.

17The analysis above is a demonstration of the basic intuition behind two types of problems commonly
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Observation 1 Adverse selection leads to underinvestment in participation problems and

overinvestment in optimization problems.

Our model yields an “optimization” problem and therefore, overinvestment. In particu-

lar, although x represents a threshold for investment, the principal’s choice of x at time t is

the result of an “optimization” problem indicated by the HJB equation (19). The benefit of

a higher x is captured by V2(x), which is an increasing function, while the cost of a higher

x is the longer waiting time.18 The crucial mechanism at work in our model is the dynamic

nature of the model: by not investing in a target, the principal preserves the possibility that

a better target arrives in the future. Consequently, even though targets only arrive one at

a time, the principal has the option to adjust her investment policy x through an “opti-

mization” problem over its benefits and costs. Our model thus provides a micro-foundation

for an “optimization”-problem-based dynamic search for investment opportunities. It is a

natural characterization of the practices of internal innovation, project selection and exter-

nal investment opportunities discussed in Section 1. Moreover, the dynamic nature yields a

time-varying investment policy and therefore, time-varying degrees of overinvestment. We

discuss the practical implications of these results in more details in Section 5.

5 Empirical Predictions of the Main Setting

This paper studies an investment decision in the presence of agency frictions (i.e., unob-

servable arrival of investment targets and their quality) combined with dynamic search for

opportunities. In contrast to the underinvestment distortion found in the vast majority of

previous theory research on project selection, our analysis demonstrates that the interplay

of these frictions and optimal contracting results in overinvestment—a phenomenon sub-

used in models of project selection. It is not a proof for the precise conditions under which under- or
overinvestment can arise. Such proof is difficult, if not impossible, unless very specific model assumptions
are made, which naturally limits its generality and applicability across different models.

18More specifically, the cost from longer waiting can be further decomposed into the direct search cost
and the indirect agency cost. In particular, a higher x requires strong incentives for the agent (U(x)), and
the marginal cost of providing such incentives is captured by the marginal value of the agent’s continuation
utility (V ′

1(W )). Because V1(W ) is concave, and W decreases over time, a longer waiting time increases
V ′
1(W ) and thus the agency cost.
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stantiated by empirical observations in both external and internal investment endeavors.19

For instance, following the boom of SPACs in recent years, Dambra, Even-Tov, and George

(2021), Lin, Lu, Michaely, and Qin (2021), and Gahng, Ritter, and Zhang (2022) examine

the subsequent performance of SPACs and find extensive evidence of underperformance, sug-

gesting that SPAC sponsors select low-quality private firms as targets and push those deals

through. Lang, Stulz, and Walkling (1991), Harford (1999), Andrade, Mitchell, and Stafford

(2001), and Masulis, Wang, and Xie (2007, 2009) document wide-spread negative stock re-

turns for the bidders of M&A activities as a sign of those firms making value-destroying

acquisition choices. In the market of hedge fund activism (HFA), Yin and Zhu (2023) find

that although HFA targets in general experience positive abnormal returns around the public

announcement of the hedge funds’ intervention, those targets do not perform better than

the other holdings of the same hedge funds and can underperform. Meanwhile, Richardson

(2006) constructs an accounting-based measure and finds ample evidence for overinvestment

defined as investments beyond those required to maintain assets in place and to finance

expected new investments in positive NPV projects.20 Billett, Garfinkel, and Jiang (2011)

document similar findings explicitly for lumpy internal investment that result in lower oper-

ating outcomes (EBIT/assets ratio) and stock returns.

Within our model, in exchange for his private information about the quality of each

arriving target, the agent receives sufficiently high information rent that increases with target

quality. However, because targets arrive one at a time and the agent is the only one observing

them, he is tempted to conceal the arrival and wait for a better target in the future. To

deter that, the optimal contract utilizes a combination of resource budget, threshold for

investment, and the threat of termination without pay. The balance of the budget decreases

over time until either the agent announces a suitable target that meets the predetermined

threshold (which triggers production), or the budget is exhausted (which triggers termination

of the search). Waiting is now costly to the agent, as it increases the likelihood of termination

19Prior theoretical work often assumes that there exists only one investment opportunity—an assumption
that, in the absence of additional frictions, results in underinvestment (see Section 4.3 for details). Controlling
for the availability of investment opportunities (e.g., by controlling for industry), one might test the sign of
investment distortions predicted in our and prior work.

20In Richardson (2006), investments are defined as the sum of a firm’s capital expenditure (CAPEX),
R&D, acquisition, and sales of PP&E.
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before the next suitable target can arrive. Meanwhile, terminating the search is also costly

to the principal as her payoff only comes from the production output. Consequently, the

principal sets an investment threshold that is progressively lower than the first-best, resulting

in overinvestment at a time-varying degree.

The simple form of the optimal investment policies xFB and x(W ) summarized in Lemma

1 and Proposition 3 allows the derivation of useful comparative statics, offering empirically

relevant predictions testable in the context of both internal and external investments and

project selections. According to Corollary 1, agency frictions in the model lead to overin-

vestment, the degree of which can be measured by the ratio between x(W ) and xFB (i.e.,

θmin/x
FB). A parameter change is said to exacerbate overinvestment if it lowers this ratio.

Based on these definitions, Lemma 1 and Proposition 3 imply the following:

Proposition 4 A higher intensity of target arrival, λ, or a lower search cost, δ, exacerbate

the degree of overinvestment as measured by the ratio between x(W ) and xFB.

Empirically, the intensity of target arrival λ can be proxied by the number of firms in

the industry and/or the frequency of SPACs, M&A, VC, HFA, or internal innovation. The

search cost δ can be proxied by the type of industry (more or less innovative), geographical

proximity/location (Glaeser and Lang, 2023), executive connections, as well as by standard

measures for the availability of information about investment targets (e.g., percentage of

public firms in the industry, stock liquidity, analyst coverage, and institutional holdings),

given that more information facilitates searching. The degree of overinvestment can be

approximated by market reactions—such as stock returns—to the investment decisions (e.g.,

Lang, Stulz, and Walkling, 1991; Harford, 1999; Andrade, Mitchell, and Stafford, 2001;

Masulis, Wang, and Xie, 2007, 2009), accounting measures needed to maintain assets in

place and finance positive NPV projects (e.g., Richardson, 2006; Rozenbaum, 2019), or

deviations from that predicted by the firm’s investment opportunity (e.g., McNichols and

Stubben, 2008). Together, the results in Proposition 4 can be translated into the following

testable empirical prediction:

Prediction 1 Overinvestment in SPACs, M&A, VC, HFA, or internal innovation is posi-

tively associated with the number of firms and frequency of activities in the relevant markets,
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the geographical proximity between the investment firms and their targets, as well as with

the executive connections, stock liquidity, analyst coverage, and institutional holdings of the

targets.

Our model also predicts that along the equilibrium path, the principal optimally adopts

a progressively lower investment threshold with values between x(W ∗) and x(W ). Because

a higher investment threshold is associated with a higher expected payoff (V ′
2(x) > 0), the

dynamics of x can be potentially proxied by the variations in returns. In particular, the gap

between x(W ∗) and x(W ) can be interpreted as the “return dispersion” in those markets,

which is arguably straightforward to measure. Thus, Propositions 3 and 4 suggest that such

dispersion is wider if λ is higher or if δ is lower, implying the following hypothesis:

Prediction 2 The return dispersion of SPAC business combinations, M&A deals, VC in-

vestments, HFA targets, internal investments in innovation is positively associated with the

frequency of those activities and the number of firms in the market. The return dispersion

is negatively associated with the geographical proximity between the investment firms and

their targets, as well as with the executive connections, stock liquidity, analyst coverage, and

institutional holdings of the targets.

Our results provide a different perspective for interpreting cross-sectional survey data,

such as those reported in Poterba and Summers (1995) and Drury and Tayles (1996). These

surveys reveal that firms actively and intentionally forgo positive NPV projects—a practice

typically regarded as a sign of underinvestment. Our model suggests that this is not necessar-

ily the case if firms’ investment decisions are made in a dynamic environment: In our model,

every project has a positive NPV, yielding a strictly positive payoff to the principal even

after taking into account the necessary information rents to the agent (i.e., y(θ)− w(θ) > 0

for all θ). However, the firm may optimally forgo some earlier targets in anticipation of

better ones in the future. As time progresses, the firm also optimally lowers its quality

standard and may eventually invest in a target with lower returns than those of previously

foregone targets. Therefore, without controlling for the time-series of investment opportuni-

ties, the cross-sectional observations of investment behaviors alone do not necessarily reflect

suboptimal capital budgeting policies.
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We further complement the analytical comparative statics with numerical simulations

that yield predictions regarding the distribution of the variables of interest. Specifically, for

each set of parameters, we simulate 1,000 paths of evolutions of the contract and calculate

the success rate (i.e., the fraction of paths in which a suitable target arrives and triggers the

investment) and the agent’s initial time limit (i.e., the maximum search time allowed before

termination). We also calculate the average and standard deviations of the search time,

target value, and managerial compensation conditional on the investment being triggered.

Table 1 presents the results for a benchmark case and several comparative statics in

which we maintain the value for all but one parameter of the benchmark. A higher λ (target

arrival rate) increases both the frequency of deal completion and the maximal search time

allowed before termination. In contrast, a higher δ (search cost) or a higher κ, which means a

thinner tail for the underlying distribution of target quality (i.e., fewer high-quality targets),

both lower the completion rate and the maximal time allowed.

Table 1: Simulation

(1) (2) (3) (4)
Benchmark Higher λ Higher δ Higher κ

Success rate 0.36 0.39 0.29 0.28
Initial time limit 272 375 119 98

Conditional on search being successful
Average search time 173.77 237.61 73.40 59.83

SD of search time 80.35 112.73 33.34 27.31
Average target value 3.71 4.32 3.04 2.68

SD of target value 3.54 3.75 3.54 3.09
Average agent compensation 4.10 5.11 3.37 2.66
Average cost of overinvestment 12.76 14.97 8.86 5.36

The parameters for the benchmark are λ = 3, δ = 1.1, κ = 2.5. In columns (2) to (5), all parameters are the

same as those in the benchmark except for: λ = 3.25 in column (2); δ = 1.3 in column (3); and κ = 2.6 in

column (4). Each column corresponds to 1,000 paths of simulations. Success rate is the fraction of the paths

in which a suitable target according to the optimal investment policy arrives and investment is triggered. The

initial time budget is the maximal search time allowed before contract termination. Managerial compensation

of each deal refers to Wτ− +R(θ), i.e., the residual utility carried over from the search stage plus the agent’s

rent in the production stage based on the quality of the target. The average and standard deviations of the

search time, target value, average agent compensation and cost of investment are conditional moments of all

paths that do not end with termination.

Higher λ implies a longer average search time conditional on the search being successful.
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There are two reasons for this outcome. First, higher λ increases the maximal allowed

search time. Second, with more abundant potential targets, the optimal contract imposes a

higher initial hurdle for investment that also declines slowly over time. This can be seen in

the higher average target value and managerial compensation, which are determined by the

investment hurdle x. In comparison, the agent is given a shorter time budget as well as a

more rapidly declining investment hurdle when δ or κ are higher, resulting in a lower average

target value and managerial compensation but also a faster search time. These results can

be summarized in the following testable prediction, which may help reconcile the empirically

observed correlation between the success rate and performance of various search processes,

such as the large numbers of SPAC business combinations completed in recent years and

their poor subsequent returns (e.g., Gahng, Ritter, and Zhang, 2022).

Prediction 3 The average returns to investments in SPAC business combinations, M&A

deals, VC investments, HFA targets, internal investments in innovation are positively corre-

lated with geographical proximity, frequency of deal completion, number of firms and relative

frequency of public firms, executive connections, stock liquidity, analyst coverage, and insti-

tutional holdings of the targets, and negatively correlated with the average incentive power of

contracts.

Finally, the simulation reveals a relationship between the cost of overinvestment and

managerial compensation. Here, we define

µFB = E[θ|θ > xFB] =
κxFB

κ− 1
(28)

as the expected quality of the targets being invested under the first-best scenario. For each

target θj chosen in simulation j, we define the “cost of overinvestment” as µFB − θj if

θj < xFB, and zero otherwise. This cost reflects that, due to the agency friction, an inferior

target θj is chosen instead of waiting for a target that clears the first-best investment hurdle,

which is µFB in expectation. We then take the average of this cost across all paths under

which an investment is made in Table 1, which shows that

Prediction 4 The expected cost of overinvestment is positively correlated with the expected

managerial compensation.
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Intuitively, while the manager’s compensation increases with the average quality of the tar-

gets invested, the cost of overinvestment is driven by the gap between the average quality of

the targets invested and the average quality of the targets that should be invested in under

the first-best scenario. Our numerical simulations reveal that when a change in the parame-

ters raises the average quality of both types of targets, it also widens the gap between them,

thereby increasing the cost of overinvestment. Our prediction corroborates with existing em-

pirical evidence from capital markets. For example, using a comprehensive hand-collected

sample of SPACs, Feng, Nohel, Tian, Wang, and Wu (2023) shows that the deals in which

the sponsors receive higher compensation are on average associated with poorer performance

after the completion of the business combination.

Empirical studies (e.g., Richardson, 2006; Masulis, Wang, and Xie, 2007, 2009; Franzoni,

2009) usually attribute the evidence of overinvestment to the manager’s empire building

preference and interpret it as a lack of discipline inside the firm. That is, overinvestment

in these studies is a deviation from optimality, and a higher degree of overinvestment is an

indication of poor internal governance. In contrast, we show that overinvestment can arise

as an optimal arrangement between the firm and the manager even though the manager does

not intrinsically derive any additional utility from investment beyond his own compensation.

In other words, overinvestment is a necessary feature of optimality. Admittedly, contract

design may not always be optimal in practice, and poor internal governance can exacerbate

overinvestment. Thus, both mechanisms are likely to coexist in the data. Nevertheless, one

might be able to disentangle the two mechanisms by focusing on the group of firms with

better internal governance and the ability to adopt optimal contracts.21 Internal governance

can be measured by shareholder protections (e.g., Gompers, Ishii, and Metrick, 2003), board

monitoring (e.g., Fich and Shivdasani, 2012; Coles, Daniel, and Naveen, 2014), managerial

entrenchment (Bebchuk, Cohen, and Ferrell, 2009). Thus, we can develop the following:

Prediction 5 Overinvestment is more likely to be the result of optimal contract arrangement

21In the models of Gregor and Michaeli (2020, 2022) eliminating the empire-building bias is too costly so
the principal optimally allows some level of overinvestment in equilibrium. There, the party with empire-
building preferences is assumed to be in control of the investment policy either directly or indirectly by
influencing the information of the decision-maker. Therefore, it may also be possible to determine whether
an observed overinvestment is driven by empire-building preferences or not by collecting data on the decision
rights inside companies.
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if it is observed among firms with better internal governance, stronger board monitoring, and

lower managerial entrenchment.

Our predictions are formulated ceteris paribus. Empirical testing thus requires identi-

fication to control for confounding factors. Although rigorous empirical analysis is outside

the scope of this paper, several identification strategies, such as using the decimalization on

major stock exchanges as an exogenous shock to stock liquidity (e.g., Edmans, Fang, and

Zur, 2013), or the addition of non-stop flights between the locations of a firm and its poten-

tial investment targets as an exogenous shock to search cost (e.g., Bernstein, Giroud, and

Townsend, 2016), already exist in the literature and may provide useful settings to explore

the predictive power of the model in this paper.

6 Extensions and Additional Empirical Predictions

This section introduces two extensions: one in which the search stage is subject to the agent’s

hidden effort (Section 6.1), and one in which the production stage is also dynamic (Section

6.2). These extensions illustrate the robustness of the main results as well as the theoretical

flexibility of our baseline model while producing new empirically testable predictions. For

ease of exposition, we focus our discussions on the differences in the assumptions and impli-

cations compared to the baseline model, and relegate most of the technical analyses of the

solution to the Appendix.

6.1 Moral Hazard During the Search Period

In the baseline model, targets arrive randomly via a Poisson process as long as the principal

pays the flow search cost δ. In practice, the search for valuable investment opportunities

often requires costly and unobservable effort from the managers, thus generating a moral

hazard problem that can interact with the adverse selection problem regarding the timing

and quality of the arriving targets. In this subsection we extend the baseline model to explore

the impact of such moral hazard on the firms’ investment policies.

Specifically, we assume that during the search stage, the agent has unobservable control
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over the utilization of the resources: he can spend the resources on search, in which case

the targets arrive via a Poisson jump process Nt with intensity λ as in the baseline model,

or alternatively divert the resources to generate private benefit ρ for himself, in which case

no target arrives. Note that this is equivalent to having an unobservable binary action

at ∈ {0, 1} where the agent either works (when spending the resources on search, at = 1)

or shirks (when he diverts them for private benefits, at = 0). The parameter ρ represents

the perks and benefits from actions that are enjoyable to the agent personally but do not

contribute to the discovery of investment targets, such as excessive traveling, spending the

firm/fund’s resources to build a personal reputation or network, and hiring (unqualified)

friends and family members. We assume ρ < δ, so shirking is socially inefficient. The second

friction is that, as in the main part of the paper, only the agent observes the arrival of targets

and their quality θ.

Similar to the baseline model, the contract can be characterized using the agent’s con-

tinuation utility Wt, which drifts down in the absence of any suitable target. To provide

the incentive for search effort, the downward drift of continuation utility must be kept at a

rate commensurate to his private benefit if he chooses to shirk. That is, the agent exerts the

search effort if and only if

J(xt) ≥ ρ, (29)

where J(xt) is still given by (16). Intuitively, the agent faces a tradeoff between working

and shirking: the latter yields flow benefit ρdt. However, because no target arrives while he

shirks, his continuation utility drifts down at the rate of J(xt)dt. The agent prefers not to

shirk if the above-mentioned cost exceeds the benefit, which is captured by inequality (29).

The principal’s optimal choice of investment threshold xt now solves the same HJB equa-

tion (19) subject to the IC condition (29). When (29) is slack, the solution follows the

same structure as that described in Section 4.2. However, with unobservable search effort,

the choice of xt is constrained. In particular, the left-hand side of the IC condition (29)

is decreasing in x, because the arrival rate of high-quality targets decreases faster than the

agent’s expected rent from those targets. Therefore, there may exist W such that the IC
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condition is binding when W ≥ W . In that region, x(W ) is given by the IC condition, or

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

, if W ≥ W. (30)

In other words, the optimal investment threshold x is constant for a sufficiently high level

of W . Setting x = x̄ in (21) implies that W solves

V ′
1(W ) =

κ

2

(
1

γ
− δ

ρ

)
. (31)

Altogether, the optimal contract during the search stage can be summarized in the fol-

lowing proposition:

Proposition 5 Under the optimal contract, if the agent’s search effort is unobservable, the

principal’s value function V1(W ) solves the HJB equation (18) subject to the IC condition

(29) and the boundary condition V1(0) = 0. If γδ < ρ < λγ2θ2min/(κ − 2), then there exist

{W,W} that solve (22) and (31) , respectively, such that the optimal investment policy x(W )

is given by

x(W ) =


θmin, if W < W[(
1−

(
2γ
κ

)
V ′
1(W )

) (λγθκmin

δ(κ−2)

)] 1
κ−2

, if W ≤ W < W[
λγ2θκmin

ρ(κ−2)

] 1
κ−2

, if W ≥ W

(32)

where x′(W ) > 0 for all W ∈ (W,W ).

Figure 2 illustrates the value function V1(W ) and the three regions of the optimal in-

vestment policy x(W ). Compared to the baseline model, unobservable search effort repre-

sents an additional agency friction, which intuitively lowers the principal’s value function.

Meanwhile, x(W ) is lower when W is near W ∗, implying that unobservable search effort

exacerbates overinvestment. Intuitively, unobservable search effort imposes an additional

constraint (equation 29) that expedites the decline of W in the equilibrium, raising the cost

of maintaining a high investment threshold.

The introduction of unobservable search effort brings new insights to our model. Theoret-
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Figure 2: Value Function and Investment Policy with Unobservable Search Effort
This figure illustrates the incremental effect of unobservable search effort from the agent (red dashed line)

compared to the baseline model without such effort (blue solid line). The left panel of this figure plots the

principal’s value function V1(W ). The right panel plots the optimal investment threshold x(W ) and the

first-best investment threshold xFB . W and W are defined according to (22) and (31), respectively, and

W ∗ ≡ argmaxW V1(W ) represents the point at which V1(W ) is maximized (W ∗
BASE for the baseline model

and W ∗
HE for the extension with hidden effort). Parameter values are λ = 2.5, κ = 4.25, δ = 1.1, ρ = 1.

ically, this extension illustrates a framework in which two widely observed agency frictions—

moral hazard and adverse selection—can be jointly analyzed. Azarmsa, Liu, and Noh (2023)

studies the incentives for division managers to acquire information at a privately observed

cost to influence the allocation policy of the headquarters. There, the main challenge for the

headquarters is to maintain the incentive for information acquisition of division managers

who are tempted to free-ride the other divisions’ information. However, division managers

have no incentive to hide or misreport their private information once it is acquired. Our ex-

tention differs in that in addition to not exerting the search effort, the agent is also tempted

to conceal or misreport his private information (consisting of the arrival and quality of the

investment targets). The optimal contract thus must provide incentives not only for the

agent’s private action but also the truthful and timely report of private information. This

connects our study to the broad literature of mechanism design in which the agent can take

private actions, such as Kirby, Reichelstein, Sen, and Paik (1991), Dutta and Reichelstein

(2002), Krähmer and Strausz (2011), Halac, Kartik, and Liu (2016), and Liu and Lu (2018).

In particular, Halac, Kartik, and Liu (2016) studies experiments in a learning model in which

the agent’s private effort is a necessary (but not sufficient) condition for success. The adverse
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selection of the underlying success likelihood results in a screening contract with different

endogenous deadlines at which the contract is terminated if success has not been achieved.

Our extention shares the similarities that “success” (the arrival of an investment target) is

stochastic and only possible if the agent exerts effort. However, our model differs in that

“success” carries the additional information about the quality and thus requires different

levels of incentives under the optimal screening contract. This additional dimension of the

agent’s private information also implies that the definition of “success” in our model is time-

varying: earlier targets must clear a higher hurdle in order to successfully trigger investment.

Moreover, while the interaction of the two problems can impose substantial analytical chal-

lenges in a general model, our setting allows us to tackle the problems sequentially and thus

achieving tractable analytical solutions.

Empirically, the introduction of unobservable search effort produces additional testable

hypothesis. In particular, it introduces an additional parameter ρ which measures the agent’s

private benefit/perk and is related to the principal’s optimal investment policies. In the

equilibrium, ρ equals the minimal speed at which the agent’s continuation utility has to drift

down without the target. Therefore, ρ can be indirectly measured by the incentive power

of the managerial contract such as the fraction of inside equity. This is also the standard

interpretation in the optimal contracting literature (e.g., DeMarzo and Sannikov, 2006; Biais,

Mariotti, Plantin, and Rochet, 2007). Thus, we obtain the following hypothesis:

Prediction 6 The average incentive power of managerial contracts in the investment firms

is positively associated with overinvestment in SPACs, M&A, VC, HFA, or internal project

selections and innovations.

6.2 Dynamic Adverse Selection

Our second extension pertains to the production stage. The baseline model posits that pro-

duction is a one-time decision. Once investment is made and the agent exerts the production

effort e, a single output y is realized, and the contracting relationship ends. This implies a

static adverse selection problem and simplifies the derivation of the optimal screening con-

tract. In this section, we demonstrate that our main results hold qualitatively when the
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production stage is also dynamic and the agent’s private information evolves stochastically.

Let τ represent the end of the search stage. Consider the following extension: The

production stage lasts an exogenous period of T > 0 (i.e., from τ to τ + T ), during which

the agent continuously produces outputs from the target chosen in the previous stage. The

production technology is given by

yt = etξt, (33)

where yt is the output, et is the agent’s (production) effort exerted at a quadratic personal

cost h(et) = e2t/2, and ξt is the “productivity” of the target, which now evolves over time.

For tractability, we assume ξt follows a geometric Brownian motion (GBM):

dξt = ξt (µdt+ σdZt) (34)

with publicly-known parameters µ and σ. θ determines the initial value of ξt, i.e., θ = ξτ .

Compared to the existing literature, a theoretical innovation (and challenge) of this set-

ting is that the agent’s private information ξt is persistent, which implies the adverse selection

problem faced by the principal is dynamic. While there are studies exploring persistent pri-

vate information in the context of dynamic moral hazard (e.g., Williams, 2011; Marinovic

and Varas, 2019), studies of persistent private information in the context of adverse selection

are rare, as it is known to be a challenging problem. Fortunately, the specific structure of our

model implies that the screening problem during the production stage is also time-separable.

That is, the set of feasible contract terms (i.e., {yt, wt}) at time t ∈ [τ, τ +T ] is independent

of the history of the contract, and the flow utility of the agent and the principal at time t

depends only on the initial and the current private information of the agent. Under time-

separability, the dynamic adverse selection problem can be converted into a static mechanism

design problem similar to that analyzed in Section 4.1, allowing us to uniquely pin down

R(θ) and V2(x) under any incentive compatible contract which is all we need to feed back

into the search stage. The resulting optimal contract under is summarized as follows:

Proposition 6 For any given investment policy x, the optimal contract in the production
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stage has the following properties:

– The agent’s information rent from a target of quality θ > x at the beginning of the

production stage is given by

R(θ) =
ϕγ2

2
(θ2 − x2). (35)

where ϕ is a function of the model parameters µ, σ, and T , given by (88).

– The principal’s expected payoff at the beginning of the production stage is

V2(x) =
ϕγκ

2(κ− 2)
x2. (36)

– During the production stage, the principal’s optimal output target {y∗t }t∈[0,T ] is given

by y∗t = γξ2t and the implied equilibrium production effort is e∗t = γξt.

The optimal contract during the search stage can be summarized by the principal’s value

function V1(W ), which solves an HJB equation analogous to (18) subject to the boundary

condition V2(0) = 0. If ϕ ≥ 1, the optimal investment policy x(W ) is given by

x(W ) =

θmin, if W ≤ W[(
1−

(
2γ
κ

)
V ′
1(W )

) (λγθκmin

δ(κ−2)

)] 1
κ−2

, if W > W

(37)

where W is given by (22). x(W ) < xFB, and x′(W ) > 0 for all W > W .

Despite the dynamic nature of the adverse selection problem, our main results remain

qualitatively intact. In particular, the agent’s information rent in the production stage is

still a quadratic function of the target quality θ and the principal’s expected payoff is still

a quadratic function of the investment threshold x. In the search stage, W drifts downward

in the absence of a suitable target, and the optimal investment threshold x is progressively

lower, which leads to overinvestment.

The empirical implications of our model variation with dynamic adverse selection are

similar to those in the baseline model with the addition of a new one pertaining to the
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parameter ϕ, which can be interpreted as the industry or regional average return of internal

investments and innovations, M&A, HFA, VC, or SPAC activities. It is straightforward to

see that a higher ϕ increases xFB while x(W ) = θmin is unchanged, leading to the following

testable prediction:

Prediction 7 The overinvestment in SPACs, M&A, VC, HFA, or internal project selections

and innovations is positively associated with the average returns in those markets.

As noted, the results in this section demonstrate the robustness of the main model and

its practical implications. Nevertheless, the solution technique of this dynamic version of the

adverse selection problem is far more involved than the one used in the static version and

is potentially applicable to a broad class of questions involving persistent and time-varying

private information. Our solution method utilizes the Myersonian approach developed in

Eső and Szentes (2007) and Pavan, Segal, and Toikka (2014) but extended to continuous

time. The details are provided in the proof of Proposition 6 in the Appendix for interested

readers. This method can be easily combined with dynamic moral hazard as introduced in

Section 6.1, providing a unified framework for researchers interested in jointly studying these

two important agency frictions.

7 Concluding Remarks

We consider a setting where a principal delegates a costly and dynamic search for investment

targets as well as their operation to an agent. The agent is privy to the (stochastic) arrival

of the targets and their quality, and needs to receive proper incentives to truthfully disclose

such information. The optimal contract involves the use of a dynamic budget, a threshold

for investment, and an internal charge for search resources. The balance of the budget, the

investment threshold, and the resource charge are all endogenous and time-varying, adjusted

according to the search history. These features yield implications different from those in

static models, particularly overinvestment relative to the first-best at an accelerating rate.

The results help understand and predict the returns from investments in SPAC business

combinations, mergers and acquisitions, VC investments, HFA interventions, and/or internal

innovations.
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Our work can be extended in several directions. For simplicity, the model does not allow

the agent to revert to the search stage once production begins. In practice, the search and

production processes do not always move forward linearly. Letting the agent conduct both

search and production repeatedly or simultaneously may yield interesting insights about

firms’ optimal internal organization and/or resource allocation. The agent may be allowed

to exert variable levels of effort in order to expedite the search process. Finally, the principal

may also have access to an auditing technology that can reveal the quality of the announced

target at a cost. We leave these topics for future work.
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Appendix

Proof of Lemma 1: First, V FB′
2 (θ) = θ > 0. Therefore, if x ∈ ΘFB for some x, then

θ ∈ ΘFB for all θ > x. i.e., ΘFB = {θ : θ ≥ xFB}. Thus, the conditional expectation of the
principal’s payoff from setting an arbitrary cutoff investment quality x is

VFB
2 (x) ≡ E

[
V FB
2 (θ)|θ ≥ x

]
=

∫ +∞

x

θ2

2

(
κxκ

θκ+1

)
dθ =

κx2

2(κ− 2)
. (38)

Equation (38) utilizes the fact that a Pareto distribution truncated from below at some
x > θmin is a Pareto distribution with the same shape parameter κ and scale parameter x.
Equation (38) also reveals why κ > 2 is needed for the first-best to exist. Let V FB

1 (x) be
the principal’s value function at the outset of the search stage associated with cutoff policy
x, then

V FB
1 (x) = max

x

∫ +∞

0

[
−δt+ F (x)V FB

1 (x) + (1− F (x))VFB
2 (x)

]
λe−λtdt. (39)

The three terms inside the square brackets represent the cost of search, the payoff from
a target with quality lower than x, and the expected payoff from the arrival of a target
with quality x or above, respectively. Using the fact that F (x) = 1 − (θmin/x)

κ for Pareto
distribution, V FB

1 (x) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
x

−δ + λ

(
θmin

x

)κ [
VFB
2 (x)− V FB

1 (x)
]
. (40)

Substituting (38) into the HJB equation and re-arranging the terms yields

V FB
1 (x) = max

x

κx2

2(κ− 2)
− δxκ

λθkmin

. (41)

The first order condition with respect to x yields xFB as in (4). Substituting xFB into (41)
yields V FB

1 (xFB) as in (5).

Proof of Lemma 2: Suppose there is an incentive-compatible optimal contract C under
which an open set H exists with the following properties: for all θ ∈ H, θ /∈ Θ, and there
exists θ′ such that θ′ ∈ Θ but θ′ < θ̃ ≡ infH. Let θ̄ ≡ max{θ : θ ∈ Θ, θ < θ̃}. Clearly,
y(θ̄) − w(θ̄) > 0 and w(θ̄) ≥ h(e(θ̄)) if C is optimal. Now consider a contract C ′ that is

otherwise identical to C except for the following: for any report θ̂ ∈ H, the required output
y(θ̂) = y(θ̄) and the associated compensation is w(θ̂) = w(θ̄). This contract is incentive-

compatible because for all θ̃ ∈ H, e(θ̃) = y(θ̄)/θ̃ < e(θ̄) and is independent of the report θ̂.
Thus, w(θ̃) = w(θ̄) > h(e(θ̃)) for all θ̃. However, y(θ̄) − w(θ̄) > 0 implies that C ′ generates
the same payoff as C for all θ /∈ H but positive (higher) payoff for all θ̃ ∈ H, contradicting
the assumption that C is optimal. Therefore, it must be that such H does not exist under
the optimal contract.
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Proof of Proposition 1: The principal offer a screening contract {w(θ̂), y(θ̂)}. The agent

reports his type θ̂, produces the required level of output, and receives the associated com-
pensation. With a slight abuse of notation, define

R(θ, θ̂) = w(θ̂)− h(e) (42)

as the information rent of the agent with type-θ reporting θ̂, subject to the constraint that
y(θ, e) = y(θ̂). i.e., he must produce the level of output designed for the type-θ̂ agent. Let
e(y, θ) represent the necessary effort required by a type-θ agent to produce output y. Then,
one can define R(θ) = R(θ, θ) as the agent’s equilibrium rent under truthful reporting, and

θ̂∗(θ) = argmax
θ̂

R(θ, θ̂) (43)

as the optimal reported type chosen by a type-θ agent. This optimality implies the following
envelope condition:

Rθ̂(θ, θ̂
∗(θ)) = 0. (44)

Therefore, in the equilibrium

R′(θ) =
∂R(θ, θ̂∗(θ))

∂θ
= Rθ +Rθ̂(θ, θ̂

∗(θ))
dθ̂∗(θ)

dθ
= Rθ = −h′(e)eθ(y, θ) (45)

based on the envelope condition.
The principal’s payoff in the production stage is therefore V2(x)−Wt− , where

V2(x) = max
y,w

∫ ∞

x

[y(θ)− w(θ)]dF (θ) = max
y,w

∫ ∞

x

[y(θ)− h(e(θ, y))−R(θ)]dF (θ) (46)

where

F (θ) = 1−
(x
θ

)κ
(47)

f(θ) =
κxκ

θκ+1
. (48)

Applying integration by parts to the last term inside the integral of V2(x) in (46) yields∫ ∞

x

R(θ)dF (θ) =

∫ ∞

x

R′(θ)(1− F (θ))dθ +R(x). (49)

Substituting this into (46) above yields

V2(x) = max
y

∫ ∞

x

[y − h(e)−R′(θ)g(θ)]f(θ)dθ (50)
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where

g(θ) ≡ 1− F (θ)

f(θ)

represents the inverse hazard function of θ. Replacing R′(θ) with (45), point-wise maximiza-
tion with respect to y yields the following optimality condition:

1− h′(e)ey(e, θ) +
dh′(e)eθ(y, θ)

dy
g(θ) = 0 (51)

which yields the optimal target y for each type θ. Because y = θe and h(e) = e2/2,
e(y, θ) = y/θ, eθ = −y/θ2, and

dh′(e)eθ(y, θ)

dy
= −dy

2/θ3

dy
= −2y

θ3
.

The fact that θ follows a Pareto distribution implies that

g(θ) =
1− F (θ)

f(θ)
=
θ

κ
(52)

Substituting these results into (51) yields

1− y

θ2
− 2y

κθ2
= 0 (53)

which implies y = γθ2, where

γ =
κ

κ+ 2
. (54)

Substituting y = γθ2 into (42), using the IC constraint θ̂ = θ, and imposing R(x) = 0 yields

R(θ) =
γ2

2
(θ2 − x2). (55)

Combine this with y = γθ2 implies that

V2(x) =
γκ

2(κ− 2)
x2. (56)

Proof of Proposition 2: Let Ft denote the filtration generated by the agent’s report
θt (where θt = 0 if no investment opportunity arrives). Wt is an Ft-martingale and thus,
by the martingale representation theorem for jump processes, there exists a Ft-predictable,
integrable process βt such that

dWt = atβt(dNt − λ(1− F (xt))dt). (57)

Incentive compatibility of truthful reporting of θ requires that Wτ − Wτ− = R(θτ ) if the
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contract moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the
property of a martingale.22 Thus, given the investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (58)

where U(xt)λ(1−F (xt)) ≥ ρ. Substituting in 1−F (xt) =
(

θmin

xt

)κ
yields equations (16) and

(29).

Proof of Proposition 3: Applying Ito’s lemma to dWt implies the principal’s value function
in the search stage solves the following HJB equation:

0 = max
x

−δ − λ

(
θmin

x

)κ

U(x)V ′
1(W ) + λ

(
θmin

x

)κ

[V2(x)−W − V1(W )] (59)

Substituting U(x) from (13) and V2(x) from (12) into the HJB equation and rearranging
terms yields:

V1(W ) = max
x

(
γκ

2(κ− 2)

)
x2 −

(
γ2x2

κ− 2

)
V ′
1(W )−W − δ

λ
xκθ−κ

min. (60)

The first order condition implies

γ

κ− 2
[κ− 2γV ′

1(W )]x =
δ

λ
κxκ−1θ−κ

min. (61)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

. (62)

Meanwhile, substituting x = θmin into (62) implies that there exists W such that

θmin =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

. (63)

That is, W solves

V ′
1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
. (64)

Note that under the optimal contract, V ′(W ) > −1 for all W . This is because principal can
always make a cash transfer to the agent, which lowers W and V (W ) by the exact same
amount. Therefore, the marginal value of building W inside the firm can never be lower
than the marginal value of cash transfer, which is −1.

22Note that this also follows the definition of R(θ) in Section 4.1 which is the information rent the agent
must be given to reveal θ truthfully in addition to any utility Wτ− carried over from the search stage.
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The proof above assumes R(x) = 0: i.e., it is optimal not to award the agent addi-
tional compensation beyond that necessary for the truthful revealing of target quality. It is
straightforward to show that this is indeed optimal. Let b(W ) ≡ R(x(W )) denote such the
extra bonus. The HJB equation (19) can be then re-written as

V1(W ) = max
x,b

V2(x)− b−W − (U(x) + b)V ′
1(W )− δ

λ

(
x

θmin

)κ

(65)

subject to b ≥ 0 and x ≥ θmin. The first order derivative for b is −1 − V ′
1(W ) < 0.

Consequently, b = 0 for all W . Intuitively, a bonus payment decreases V2 while increasing
the drift of dWt, both of which are costly to the principal.

Proof of Corollary 1: Note that under the optimal contract, V ′(W ) > −1 for all W .
This is because principal can always make a cash transfer to the agent, which lowers W and
V (W ) by the exact same amount. Therefore, the marginal value of building W inside the
firm can never be lower than the marginal value of cash transfer, which is −1. Substituting
V ′(W ) = −1 into the first-order condition (21) implies that

lim
W→+∞

x(W ) =

[
γ

(
1 +

2γ

κ

)(
λθκmin

δ(κ− 2)

)] 1
κ−2

(66)

Because

2γ

κ
=

2κ

κ(κ+ 2)
< 1 (67)

when κ > 2, this limit is always smaller than xFB. Thus, x(W ) < xFB for all W .

Proof of Proposition 4: Equations (4) and (30) imply the following comparative statics
regarding xFB and x(W ).

∂xFB

∂δ
< 0,

∂xFB

∂λ
> 0. (68)

Given that x(W ) = θmin is a constant, these results imply that

∂

∂λ

(
x(W )

xFB

)
< 0,

∂

∂δ

(
x(W )

xFB

)
> 0. (69)

Proof of Proposition 5: The proof is similar to that of Proposition 3. Thus, we only
highlight the differences. First, due to the hidden search effort, the agent’s continuation
utility Wt is now defined as

Wt = E

[∫ τ

t

ρ(1− as)ds+

∫ τ

t

dCs +Wτ

]
. (70)
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Compared to (15), the new term ρ(1−as)ds captures the agent’s private benefit if he shirks.
It is straightforward to show that the optimal contract always implements no shirking (i.e.,
at = 1) during the search stage. This is because search requires a cost δ but shirking
generates a benefit ρ < δ to the agent. Therefore, any contract that involves shirking can
be strictly improved by discouraging shirking through compensating the agent for his lost
shirking benefit.

The principal solves the HJB equation (19), subject to the IC constraint (29). If this
constraint is slack, the solution is identical to that in Proposition 3. If (29) is binding, then

λ

(
θmin

x

)κ

U(x) =
λθκmin

xκ

(
γ2x2

κ− 2

)
= ρ (71)

yields the solution

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

. (72)

Substituting (72) into (62) implies that there exists W such that

x(W ) =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

= x̄. (73)

That is, W solves

V ′
1(W ) =

κ

2

(
1

γ
− δ

ρ

)
. (74)

The existence of both {W,W} requires that W > W , which is equivalent to

κ

2

(
1

γ
− δ

ρ

)
<

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(75)

which simplifies to

λθ2min >
ρ(κ− 2)

γ2
; (76)

Meanwhile, V ′
1(W ) > 0 requires that

κ

2

(
1

γ
− δ

ρ

)
> 0 (77)

which implies

ρ > γδ. (78)

Finally, we prove that R(x) = 0 is still optimal for allW ≤ W ∗ (i.e., along the equilibrium
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path). The HJB equation (19) can be then re-written as

V1(W ) = max
x,b

V2(x)− b−W − (U(x) + b)V ′
1(W )− δ

λ

(
x

θmin

)κ

(79)

subject to the modified IC constraint[
λ

(
θmin

x

)κ]
[U(x) + b] ≥ ρ (80)

and that b ≥ 0 and x ≥ θmin. Let π be the Lagrangian multiplier associated with the
modified IC constraint. The first order derivative for b is

−1− V ′
1(W ) + πλθκminx

−κ. (81)

If (80) is slack (i.e., π = 0), then b = 0 is clearly optimal since V ′
1(W ) > −1. If (80) is

binding (i.e., π > 0) for any W ≤ W ∗, it must be that (78) holds. Since V ′
1(W ) ≥ 0 and

V
′′
1 (W ) < 0, it is sufficient to show that b = 0 is optimal when W = W ∗, where the first

order condition for x implies

γκx

κ− 2
− δ

λ
κxκ−1θ−κ

min + πλθκmin

[(
2γ

κ− 2

)
x1−κ + bx−1−κ

]
= 0. (82)

Evaluating this at b = 0 and x = x̄ where x̄ is given by (30) yields

πλθκminx
−κ =

(
δ

λ
κx̄κ−2θ−κ

min −
γκ

κ− 2

)(
κ− 2

2γ

)
=
κ

2

(
δ

ρ
− 1

)
. (83)

Thus,

−1 + πλθκminx
−κ = −1 +

κ

2

(
δ

ρ
− 1

)
< 0 (84)

since (78) implies δ/ρ < 1/γ = 1 + 2/κ. Intuitively, the marginal benefit of setting b > 0 is
to relax the IC constraint (80). However, this is insufficient compared to its marginal costs,
including a higher U(x), a lower V2(x), and a higher search cost paid. Therefore, setting
b = 0 is optimal along the equilibrium path.

Proof of Proposition 6: This proof is organized into three subsections.

A. Preliminaries
When ξt follows a GBM, ξt = ξτνt, where

νt = exp

[(
µ− 1

2
σ2

)
t+ σZt

]
, (ντ = 1) (85)

is an exogenous stochastic process with known distribution for any given t. Therefore,
dξt/dθ = ξt/ξτ = νt. Put differently, the marginal value of target quality θ on its subsequent
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productivity at any time during the production stage depends on the path of exogenous
shocks only, a property that greatly simplifies the analysis below.

If all information is public, the first-best effort and output in the production stage solve

max
et

yt − h(et) = etξt − h(et). (86)

The solution is eFB
t = ξt, y

FB
t = ξ2t . The principal’s expected payoff given the quality of the

target, V FB
2 (θ), is given by

V FB
2 (θ) = E

∫ τ+T

τ

(
yFB
t − 1

2

(
eFB
t

)2)
dt =

ϕ

2
θ2, (87)

where

ϕ = E

∫ τ+T

τ

ν2t dt =
e(2µ+σ2)T − 1

2µ+ σ2
(88)

is a constant. Here, ϕ measures the marginal value of target quality summarizing the joint
effect of µ, σ, and T , and will be treated as a known parameter in the subsequent analysis.

When ξt (including θ) is the agent’s private information, let θ̂ and {ξ̂t}t∈(τ,τ+T ] repre-
sent the agent’s reported target quality and time-t productivity, respectively. The resulting

screening contract now involves a series of the output target {yθ̂t (ξ̂t)}t∈(τ,τ+T ] and the corre-

sponding wage {wθ̂
t (ξ̂t)}t∈(τ,τ+T ] if the required output is produced. Conditional on any utility

Wτ− carried over from the search stage, the agent’s objective is to maximize his expected
wage minus his (production) effort cost from the contract—his information rent—which is
given by

R(θ) = max
θ̂,ξ̂t,et

E

[∫ τ+T

τ

(wθ̂
t (ξ̂t)− h(et))dt

]
, (89)

subject to the constraint that etξt = yθ̂t (ξ̂t). The principal’s objective is to maximize her
payoff at the outset of the production stage, which is V2(x)−Wτ− , where

V2(x) = max
yt,wt

∫ +∞

x

E

[∫ τ+T

τ

(yt − wt)dt

]
dF (θ), (90)

subject to the IC constraint θ̂ = θ and ξ̂t = ξt for all t ∈ (τ, τ + T ].

B. The Production Stage
This section solves the optimal screening contract in the production stage. The proof

begins with deriving the agent’s information rent for any incentive compatible contract.
Consider any report θ̂ made by an agent possessing an arbitrary θ-quality target. Based on

this report, the agent is assigned the contract C(θ̂), which imposes output target yθ̂(ξ̂t)t for

any future report ξ̂t, the associated wage wθ̂(ξ̂t)t if the required output is produced. The

contract implies a recommended effort process êt ≡ yθ̂t /ξ̂t for all t. Therefore, given the true
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productivity process ξt, the agent’s actual effort choice et must satisfy:

etξt = êtξ̂t. (91)

The payoff for the agent is

R(θ; θ̂) = E

[∫ τ+T

τ

(
wθ̂(ξ̂t)− h(et)

)
dt

]
. (92)

In principle, θ̂ represents a very large set of possible deviations by the agent. However,
Pavan, Segal, and Toikka (2014) and the subsequent studies of dynamic adverse selection
(e.g., Bergemann and Strack, 2015, Gershkov, Moldovanu, and Strack, 2018, etc.) show that
if the screening problem is time-separable, it is without the loss of generality to establish the
IC condition for a particular type of deviation: if he misreports the target quality, θ̂ ̸= θ, his
follow-up strategy is to continue misreporting as if the true quality was θ̂ and he had reported
that truthfully. More formally, at any time, the agent’s reported productivity satisfies the
following so-called consistent deviation:

ξ̂t = θ̂vt = θ̂ exp

[(
µ− 1

2
σ2

)
t+ σZt

]
(93)

where Zt represents the true productivity shocks the misreporting agent experiences. This
implies that although the agent’s private information regarding ξt is persistent, it is without
loss of generality to label each agent only by the quality of his target θ. Thus, we can
differentiate (92) with respect to θ to obtain:

∂

∂θ
R(θ; θ̂) = E

[∫ τ+T

τ

(
− ∂

∂θ
h(et)

)
dt

]
(94)

= E

[∫ τ+T

τ

(
etêtξ̂t
θξt

)
dt

]
(95)

= E

[∫ τ+T

τ

(
etêtθ̂

θ2

)
dt

]
(96)

where the second line utilizes the constraint (91), and the third line utilizes the consistent

deviation (93). Evaluating (96) at the equilibrium (êt = et, ξ̂t = ξt) and substituting et with
yt/ξt implies

R′(θ) = E

[∫ τ+T

τ

(
e2t
θ

)
dt

]
= E

[∫ τ+T

τ

1

θ

(
yt
ξt

)2

dt

]
(97)

which is the dynamic envelope condition analogous to the envelope condition derived in the
proof of Proposition 1 above. Integrating (97) from x up yields the information rent for any
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given θ-quality target:

R(θ) =

∫ θ

x

E

[∫ τ+T

τ

1

q

(
yt
ξt

)2

dt

]
dq +R(x). (98)

Next, we derive the principal’s expected payoff given the distribution of θ. With a slight
abuse of notation, let

∫∞
x
(·)dF (θ;x) denote the expectation of θ taken under the support

Θ taking into account how the distribution of F (θ) shifts with x. The principal’s maximal
payoff at the outset of the production stage under any incentive compatible contract is
V2(x)−Wτ− , where

V2(x) = max
yt,wt

∫ ∞

x

E

[∫ τ+T

τ

(yt − wt)dt

]
dF (θ;x). (99)

The definition of information rent R (Eq. 89) implies that

E

[∫ τ+T

τ

wtdt

]
= R(θ) + E

[∫ τ+T

τ

h(et)dt

]
. (100)

Substituting this into the definition of V2(x) (Eq. 99) yields

V2(x) = max
yt

∫ ∞

x

E

[∫ τ+T

τ

(
yt −

1

2

(
yt
ξt

)2
)
dt

]
dF (θ;x)−

∫ ∞

x

R(θ)dF (θ;x). (101)

Applying integration by parts and the fundamental theorem of calculus to the last term
yields ∫ ∞

x

R(θ)dF (θ;x) =

∫ ∞

x

R′(θ)

(
1− F (θ;x)

f(θ;x)

)
dF (θ;x) +R(x) (102)

=

∫ ∞

x

R′(θ)

(
θ

κ

)
dF (θ;x) +R(x) (103)

where the second line comes from the property of the Pareto distribution. Clearly, R(x) = 0
under the optimal contract. Replacing R′(θ) with (97) and substituting the above term back
to (101) yields

V2(x) = max
yt

∫ +∞

x

E

[∫ τ+T

τ

(
yt −

(
1

2
+

1

κ

)(
yt
ξt

)2
)
dt

]
dF (θ;x). (104)

Point-wise maximization of (104) with respect to yt yields the optimal output target y∗t and
effort e∗t :

y∗t = γξ2t (105)

e∗t = γξt (106)
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where γ = κ/(κ + 2). Substituting (106) and (105) back into (98) yields the following
information rent under the optimal contract:

R(θ) =

∫ θ

x

E

[∫ τ+T

τ

1

q
(γξ)2 dt

]
dq =

∫ θ

x

γ2qE

[∫ τ+T

τ

ν2t dt

]
dq =

ϕγ2

2

(
θ2 − x2

)
(107)

Finally, substituting (105) back into (104) yields

V2(x) =

∫ +∞

x

E

[∫ τ+T

τ

γξ2t
2
dt

]
dF (θ;x) =

∫ +∞

x

ϕγκxκ

2
θ1−κdθ =

ϕγκ

2(κ− 2)
x2. (108)

Note that, similar to the baseline model, because the principal and the agent share the
same discount rate (both 0), and there is no endogenous turnover during the production
stage, all wage payments {wt} can be postponed until the end of the production period.
Any Wτ− carried over to the production stage can also be paid at the end of the production
stage together with all the accrued wage payments.

C. The Search Stage
Let τ and Wt≤τ denote the stopping time of the search stage (either due to progress to

the next stage or contract termination) and the associated promised utility to the agent. By
the martingale representation theorem for jump processes, given any investment strategy x
of the principal, there exists a Ft-predictable, integrable process βt such that

dWt = βt(dNt − λ(1− F (xt))dt). (109)

Incentive compatibility of truthful reporting of θ requires that Wτ − Wτ− = R(θτ ) if the
contract moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the
property of a martingale, where

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

ϕγ2

2
(θ2 − x2)

(
κxκ

θκ+1

)
dθ =

ϕγ2x2

κ− 2
. (110)

Therefore, under an incentive compatible contract with investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (111)

Then, Ito’s lemma implies the principal’s value function in the search stage solves the HJB
equation:

0 = max
x

−δ − λ

(
θmin

x

)κ

U(x)V ′
1(W ) + λ

(
θmin

x

)κ

[V2(x)−W − V1(W )] (112)

Substituting U(x) from (110) and V2(x) from (36) into the HJB equation and rearrange
terms yields:

V1(W ) = max
x

(
ϕγκ

2(κ− 2)

)
x2 −

(
ϕγ2

κ− 2

)
x2V ′

1(W )−W − δ

λ
xκθ−κ

min. (113)
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The first order condition implies

ϕγ

κ− 2
[κ− 2γV ′

1(W )]x =
δ

λ
κxκ−1θ−κ

min. (114)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λϕγθκmin

δ(κ− 2)

)] 1
κ−2

. (115)

Substituting x = θmin into the above equation implies that there exists W such that

θmin = x(W ) =

[(
1−

(
2γ

κ

)
V ′
1(W )

)(
λϕγθκmin

δ(κ− 2)

)] 1
κ−2

. (116)

That is, W solves

V ′
1(W ) =

(
1− δ(κ− 2)

λϕγθ2min

)
κ

2γ
. (117)

The rest of the proof is identical to that of Proposition 3 and is thus omitted.
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