

Tackling Congestion Using Connected Car Data

Leann Thayaparan Julia van Hoogstraten Advised by **Prof. Bart van Parys** Julia Yan

Feb - May

June - July

Aug

With support from

Charles Thomas Robert Welborn Derek Hazard

Accessed data, learned tools

Developed congestion score

Packaged and delivered code

Researched techniques

Built and tested models

Presented findings

Project Description

Project goal: Activate GM's connected car data to showcase the dataset and interesting insights generated from it. Leverage the dataset to systematically support GM's brand promise of zero congestion.

Problem Statement: Develop the first GM definition and congestion and use GM vehicle telemetry data to predict future congestion.

Data

GM high speed vehicle telemetry data

Open source map data

Open source weather data

- Logs data every 3 seconds along all GM connected car trips
- A trip is defined as ignition on to ignition off
- Includes anonymized IDs, timestamp, latitude, longongitude, speed and direction
- Over 180B rows: Required specialized tools, indexing, and subsetting for modeling tractability

Detroit, MI **Congestion score definition**

MIT Campus

Austin, TX

Cambridge, MA

GM Headquarters

GM IT Innovation Center

Accurate

Scalable

Intuitive

V_{limit}: Uncongested speed on a road segment Calculation Method: Avg speed on a road 2 to 4 am within a latitude/longitude box rounded to the 2nd decimal

V_{now}: Speed on a road segment at a specific time **Calculation Method:**

Avg speed on a road within a latitude/longitude box rounded to the 3rd decimal, within 10 minutes and going in one direction

Modeling

Modeling Scope: We modelled 7 freeways in the Detroit metropolitan area, training and testing on 2.6B rows of data from January and February 2019

Methodology: There are different types of congestion, each of which have different causes, effects and symptoms. In order to predict congestion we seperated three types of congestion:

1. Periodic: Expected congestion that always occurs at certain times. Ex: rush hour

2. Irregular: Unusual congestion but predictable in advance. Ex: construction or snow storm 3. Event-based: Chaos events that cannot be predicted in advance Ex: fender bender

Royal Oak dford ter Two

In order to capture all three types of congestion, we build a three level model that runs on the scale of minutes. Each level builds the model's strength by predicting the difference between the previous levels prediction and the true observed congestion score. The first level can be predicted weeks in advance, the second layer one hour in advance and the third layer ten minutes in advance.

Accuracy Percentile within

target range:

82%

90%

Level 1: Periodic

GM had not used the

vehicle telemetry table

for tackling congestion.

We built and

reproducible

pipelines

processes and

Model: Mean

The first layer of the model captured periodic congestion through historical mean congestion by time of day and location.

Model: Ridge regression

The second layer of the model captures irregular congestion

11 AM Date Time [February 21, 2019] 0.6 11 AM Date Time [February 21, 2019]

88% 0.59

0.38

Condestion Score 0.71

Date Time [February 21, 2019]

Observed congestion

Congestion Insight: We built GM internal GM cannot currently congestion modeling leverage data for live intervention. We met expertise. GM could use the expertise to with decision makers create a real-time and generated interest congestion app or in investing in needed inform city planners. technologies.

Deliverables

- Systematic process for calculating congestion
- Predictive model of congestion
- Visualizations of connected car data and congestion implementation

Insights into data quality

Next Steps

Predicted congestion

- Make vehicle telemetry table update in real time
- Automatically route vehicle telemetry trips to roads
- Calculate congestion score live as data is gathered

patterns using features engineered to capture their causes and Level 2: symptoms: snow storms, construction, or unusually high or low Irregular numbers of cars on the road. Features include: Recent congestion trends Geographic Historical road characteristics Weather Temporal Non-linear combinations Model: Vector Autoregression The third layer models captures how waves of congestion move Level 3: through the system using multi-dimensional auto-correlation and **Event-based** historical data. VAR uses congestion from the past 30 minutes on the roadway to predict forward 10min **Impact Interest creation: Activating Dataset:**