Underwriting Risk Estimation

Capstone Sponsor: Frederick Alves | MIT Advisor: Rodrigo Verdi |

| Marian Huot & Badiss Ben Abdallah

Problem Statement and Challenge

Itaú Unibanco, Latin America's largest financial institution, manages a diverse insurance portfolio. The current **SUSEP** (*Superintendência de Seguros Privados*) standard formula overestimates capital needs by ignoring Itaú's specific risk profile. Under **ORSA** (Own Risk and Solvency Assessment), insurers must assess solvency based on internal risk. Itaú's challenge is to develop a transparent internal model that accurately quantifies underwriting risk and improves capital efficiency.

Business Impact

- ✓ Comply with ORSA regulation✓ Estimation of required capital for
- each insurance product

 ✓ Optimization of reinsurance
 policy

Possibly unlocking up to \$100 million for investments

* Upon internal model validation by regulators

Portfolio Overview and Risk Modeling

What Are We Trying to Model?

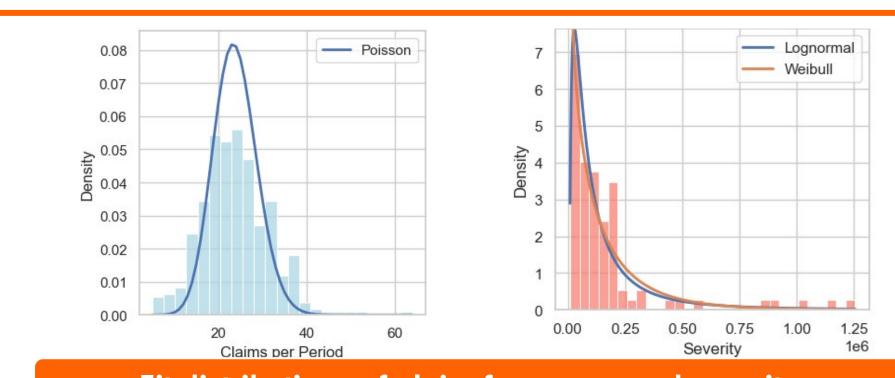
We are modeling **underwriting risk**, specifically the **total annual claims cost** across multiple insurance products. This involves understanding both:

- How often claims occur (Frequency)
- How large each claim tends to be (Severity)

These two components are **modeled separately** and then **combined via Monte Carlo simulation** to estimate annual losses, which feed into capital requirement calculations.

Clustering

Claim Severity High Freq, Low Sev Low Freq, High Sev


- Why Clustering?
 - **Different coverages** exhibit heterogeneous claim patterns (e.g., fire vs. theft).
 - Clustering allows risk pooling across coverages with similar statistical behavior, improving model robustness.
- ♦ How We Clustered?
 - Used tail-sensitive k-means on statistical features of each coverage:
 - Mean & variance of frequency

Claim Severity (R\$)

- Mean & variance of severity
- Grouped coverages into **homogeneous risk segments** for joint modeling.
- Enabled cluster-specific frequency (Poisson) and severity (Lognormal/Weibull) fitting.

Risk Simulation Pipeline

Monthly Claims

Fit distributions of claim frequency and severity

We assess how closely the simulation matches real-world data using **Relative Quantile Error (RQE):**

$$RQE = \frac{1}{|Q|} \sum_{q \in Q} \left| \frac{Q_q^{sim} - Q_q^{emp}}{Q_q^{emp}} \right|$$

Selected quantiles:

- 25%, 50%, 75% → Represent typical losses
- 90% → Captures extreme tail risk critical for regulatory capital
- Lower RQE = better match between simulation and historical losses
 Why it matters:

High-tail accuracy ensures the model realistically reflects **worst-case scenarios**, strengthening capital planning and ORSA compliance

How Do We Evaluate the Fit Accuracy?

Annual Loss Simulation with Reinsurance

- Fit distribution parameters for each cluster:
- Model claim frequency and severity separately.
- Simulate 1,000 annual scenarios to account for variability in claims.
- For each scenario:

Step 1: Weekly Simulation

Sample annual **claim frequency** and distribute across 52 weeks. Simulate **weekly claim severities** independently.

Step 2: Client Aggregation

Split total claims across clients using a **claim-to-client ratio**.

Enables realistic aggregation before applying reinsurance.

Step 3: Apply Reinsurance

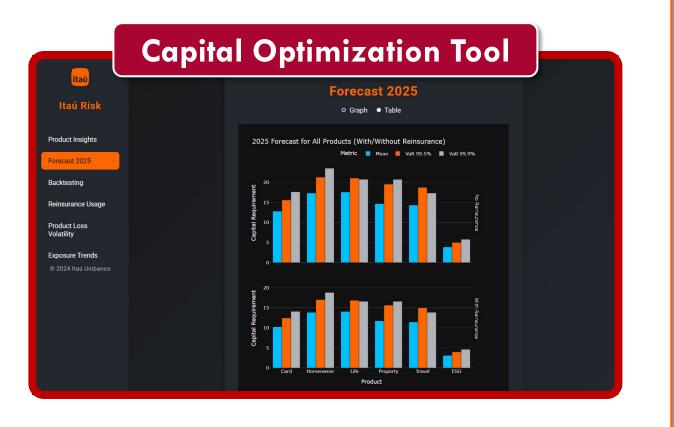
Apply reinsurance contracts (e.g. per-client or aggregate retention).

❖ After all scenarios: Capital Requirement

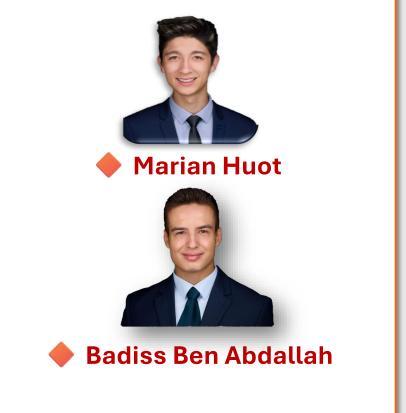
- Plot the distribution of annual losses with and without reinsurance.
- Compute key quantiles (e.g., 99.5%) for capital estimation.
- Validate the model by comparing to historical test losses.

Results and Key Takeaways

<u>Products</u>	Refined Clustering	Per-Coverage Model	1-Cluster Baseline
Property	21.34%	102.45%	28.99%
Homeowner	9.18%	10.42%	10.02%
Travel	34.66%	101.83%	39.47%
Card	20.78%	22.89%	20.93%
Life & Pension	4.87%	23.92%	10.72%


Refined Clustering RQE

- The SUSEP standard formula **significantly overestimates** underwriting risk by ignoring portfolio structure and diversification.
- ◆ A cluster-based internal model enables more granular, data-driven segmentation, improving model accuracy and interpretability.
- Capital requirements can be reduced by tuning reinsurance thresholds: allowing for earlier reinsurance activation and more efficient risk transfer.
- ◆ Backtesting with quantile errors confirms the model's robustness and alignment with historical outcomes.
- The final model is **ready for ORSA deployment**, supported by a **Capital Optimization Dashboard** that enables data-driven decision-making and stress testing.



Practical applications

- **ORSA Reporting**: Aligns with regulatory expectations for internal model validation.
- Capital Optimization: Quantifies impact of reinsurance structures and tuning priority thresholds.
- Portfolio Steering: Identifies high-risk clusters to support product repricing or underwriting actions.
- Scenario Testing: Enables simulation under stressed environments to support risk planning.

Team members

