MAY 12, 2016

RECOMMENDATIONS TO REDUCE CARBON EMISSIONS

JETBLUE AIRWAYS - TERMINAL 5 JFK AIRPORT

MARIA CAROLINA MENDEZ VIVES LEONARDO BARLACH MAXIMILIANO CALDERON SHIMENG LI MIT SLOAN SCHOOL OF MANAGEMENT SUSTAINABILITY LAB

Table of Contents

1.	. Introduction				
2.	2. Company Description and Sustainability Efforts				
2	2.1.	JFK	Airport – T5		
3.	Lite	eratu	re Review		
3	3.1. Review of Airport Solutions8				
	3.1.	.1.	Airport facility boilers, heaters, and generators8		
	3.1.	.2.	Maintenance activities8		
	3.1.	.3.	Electrical consumption8		
	3.1.	.4.	Ground Operations:9		
	3.1.5. Ground Support Equipment (GSE)				
	3.1.	.6.	Renewable Energy: Solar Energy Technologies and Airport		
Ар	plica	tions	10		
3	8.2.	Stra	ategies to reduce carbon emissions12		
4.	Me	ethod	ology14		
5. Greenhouse Gas Emissions Inventory at JFK-T515					
5.					
5. 6.	Act	tions	Proposed		
5. 6. 6	Act 5.1.	tions Ene	Proposed		
э. 6. 6	Act 5 .1. 6.1.	tions Ene	Proposed		
5. 6. 6	Act 5.1. 6.1. nera	tions Ene .1. tion l	Proposed		
5. 6. Ge	Act 5.1. 6.1. nera	tions Ene .1. tion l Bui	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Iding Efficiency 21		
5. 6. Ge	Act 5.1. 6.1. nera 5.2. 6.2.	tions Ene .1. tion I Bui .1.	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21		
з. 6. бе б	Act 5.1. 6.1. nera 5.2. 6.2. 6.2.	tions Ene .1. tion I Bui .1.	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23		
6. 6 Ge	Act 5.1. 6.1. 5.2. 6.2. 6.2. 6.2.	tions Ene .1. tion I Bui .1. .2. .3.	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23 Lighting Efficiency 23		
6. 6 Ge	Act 6.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2.	tions Ene .1. tion l Bui .1. .2. .3. Gro	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23 Lighting Efficiency 23 Data Operations 25		
6. 6 Ge 6	Act 5.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2. 6.2. 6	tions Ene .1. tion I .1. .2. .3. Gro Pur	Proposed		
6. 6 Ge 6	Act 5.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2. 6.2. 6	tions Ene .1. tion I Bui .1. .2. .3. Gro Pur Jet-	Proposed. 17 ergy Generation on Site: Installation of Solar Panel. 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control. 21 Air Leaks 23 Lighting Efficiency 23 bund Operations 25 chasing electric GSE 25 -Fuel related actions. 28		
5. 6. 6 6 6 6 7.	Act 5.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2. 6.2. 6	tions Ene .1. tion I Bui .1. .2. .3. Gro Jet- rget r	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23 Lighting Efficiency 23 ound Operations 25 chasing electric GSE 25 -Fuel related actions 28 ecommended and Conclusions 30		
5. 6. 6 6 6 6 7. 8 10	Act 5.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2. 6.2. 6	tions Ene .1. tion I Bui .1. .2. .3. Gro Jet- rget r aphy	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23 Lighting Efficiency 23 ound Operations 25 chasing electric GSE 25 -Fuel related actions 28 ecommended and Conclusions 30 32		
5. 6. 6 6 6 6 7. 8 10 8	Act 5.1. 6.1. 6.2. 6.2. 6.2. 6.2. 6.2. 6.2. 6	tions Ene .1. tion I Bui .1. .2. .3. Grc Jet- rget r aphy lix A:	Proposed 17 ergy Generation on Site: Installation of Solar Panel 17 Additional considerations: End of Lease of the Current Co- 19 Plant 19 Iding Efficiency 21 Data Analytics Technology for HVAC Control 21 Air Leaks 23 Lighting Efficiency 23 ound Operations 25 chasing electric GSE 25 -Fuel related actions 28 ecommended and Conclusions 30 32 List of Greenhouse Gas Reduction Strategies 36		

Appe	ndix C: CO2 Emission Estimates	41
Appe	ndix D: Photos of findings during Site Visit	44
Appe	ndix E: GSE cost-benefit analysis	45
a.	Ballpark GSE purchase costs (28)	45
b.	Assumptions for the analysis	45
c.	Vehicle purchasing plan	46
d.	Estimations of NPV	47

List of Figures

Figure 1 Aerial view of T5 at JFK Airport (4)6
Figure 2 Diagram representation of T5 at JFK Airport (7)7
Figure 3 Solar Energy Grid Parity Potential (12)10
Figure 4 Glare Effects at MHT (Source Sandia National Laboratory, apud. NREL (13))12
Figure 5 Methodology14
Figure 6 Scope of Greenhouse Gas emissions Inventory at JFK Terminal 516
Figure 7 Inventory Breakdown17
Figure 8 Electricity generation with a 3,500 kW DC system in the JFK area (19)18
Figure 9 Map of the JFK Airport (Source JFK)19
Figure 10 Electricity Generation at the large area between the runways (19)20
Figure 11 Architecture of the Clockworks software (Source: KGS Buildings)22
Figure 12 Lights on during a bright day in an area with natural lighting (Source: Authors)
Figure 13 JFK Motorized GSE by Type (Source: JetBlue)27
Figure 14 Breakdown of CO2 emission reduction by energy source31
Figure 15 Projection of Emissions at JFK - T5 with this adoption strategy

List of Tables

Table 1 Examples of Airports with solar panel installations	10
Table 2 Specifications of the Systems installed in DIA	11

Table 3 Specifications of the System installed in MHT	11
Table 4 Categories of greenhouse gas emission reduction strategies (9)	13
Table 5 Sources of CO2 emission	15
Table 6 Current CO2e Inventory in JFK T5, JetBlue scope	16
Table 7 Summary of Potential Solar System project	18
Table 8 Capacity Comparison between solar system proposed and current system	20
Table 9 Description of Business Case for Renewable Energy Credits	21
Table 10 Clockworks case-studies (23)	22
Table 11 Potential CO2 savings using Clockworks or a similar system	23
Table 12 Energy Savings from Replacing Lighting	24
Table 13 Potential Savings with lighting sensors	25
Table 14 Examples of Airlines and Airports using alternative fuels in GSE (28)	26
Table 15 Potential savings from purchasing GSE electric vehicles	28
Table 16 Distribution of emission for each type of energy source	30
Table 17 Reduction of each action per type of energy	30
Table 18 Implementation Schedule	31

1. Introduction

Since 2013 JetBlue has participated in the New York City Mayor's Office of Sustainability Carbon Challenge, a voluntary program in which companies, universities and hospitals within NYC commit to reduce their building emissions, and collaborate to share best practices. Initially, JetBlue met its reduction target by moving its headquarter offices to a newer, LEED certified building, therefore decreasing energy use by 82% (1). Now, JetBlue wishes to extend its participation to include its main operations hub in New York, becoming the first airport to participate in the challenge. The motivations for this project are to identify drivers of cost reduction and to secure affordable, reliable, clean energy sources, as well as to enhance JetBlue's relationship with several important stakeholders, such as the NYC Mayor's Office, the Port Authority of New York and New Jersey, elected officials, financial stakeholders and the general public.

With that in mind, the company partnered with the S-Lab course in MIT Sloan School of Management to start a project to develop a target and a strategy for reducing CO2 emissions in its operations at JFK Airport – Terminal 5 (T5). The three main goals of this project are to develop a specific target for CO2 emission reduction at JFK that JetBlue can formally submit to the Mayor's Carbon Challenge, to identify recommendations to meet this target, and to review existing practices and efforts in other airports.

JetBlue initially proposed three different potential areas of its operation to be studied, later expanded to four, which are: emissions associated with power generation for building electricity use, emissions from ground support vehicles that service aircraft, emissions from aircraft parked at the gate, and emissions associated with heating and cooling the terminal building.

With this information, we prepared a report that included the following sections:

- Literature review of actions taken by other airports
- Carbon inventory, including the main sources of energy use at JFK T5
- High level description of eight potential activities JetBlue could take to reduce its energy use and CO2 emissions
- A proposed emission reduction target to be achieved in 2021

As future steps, we recommend further detailing the solutions proposed, which were only evaluated at a high-level, identifying the ones with highest gain potential, and implementing those.

2. Company Description and Sustainability Efforts

JetBlue is a Fortune 500 airline founded in 2000, with headquarter in New York, and is a leading carrier in Boston, Fort-Lauderdale-Hollywood, Los Angeles (Long Beach), Orlando, and San Juan. In 2014, JetBlue carried more than 32 million customers to 93 cities in the US, Caribbean, and Latin America, with an average of 900 daily flights (2).

The company had in 2015 reported revenue of US\$ 6.4, with a net income of US\$ 677 million, and had by the end roughly 12,000 employees. (3)

JetBlue's 2014 Sustainability report highlighted five main values for the company: safety, caring (related to employee satisfaction), integrity (which includes its ethical and diversity goals), passion (which includes customer relations, environmental and community relations) and fun (2).

In its climate change mitigation goals, the company aligns with three industry-wide targets:

- Improve fuel efficiency by an average of 1.5 percent per year from 2009 to 2020
- Cap aviation CO2 emissions in 2020 (post-2020 growth must be carbon neutral)
- Reduce CO2 emissions by 50 percent by 2050, relative to 2005 levels

The latest sustainability report indicated a reduction in GHG emissions per Revenueton-mile from 1.65 to 1.54 metric tons CO2e/RTM from 2013.

2.1. JFK Airport – T5

T5 at JFK Airport was originally founded in 1962 as the TWA Flight Center, a neofuturistic building designed by architect Eero Saarinen that is registered in the US National Register of Historic Places.

In December 2005 the Port Authority of New York and New Jersey (PANYNJ) started building a new terminal facility for JetBlue, which opened in 2008 in a building adjacent to the old TWA building. An aerial view of the building can be seen below:

Figure 1 Aerial view of T5 at JFK Airport (4)

T5, at 635,000 square feet, was designed to handle up to 20 million passengers per year. JetBlue's international arrivals expansion added 145,000-square-feet in 2015 (5). As shown in Figure 2, the terminal includes 29 gates, with over 20 food concessions and over 30 retail stores (6).

Figure 2 Diagram representation of T5 at JFK Airport (7)

JetBlue is the sole operator of Terminal 5 (T5), and is therefore responsible for all its costs, including energy. Despite this, JFK's electricity supply and the requirements for thermal energy to heat and cool JFK terminals are leased to Kennedy International Airport Co-Generation Partners (KIAC Partners). KIAC's current system is located in the middle of the central terminal area of JFK and consists of a 107 MW natural gas-fired cogeneration facility, which consists of two identical GE LM 6000 combustion turbine generation sets, plus associated equipment for hot and chilled water with a capacity of 250 MMBTU/h for chilled water and 225 MMBTU/h for hot water, plus support equipment. Since peak demand for the airport is 60 MW, the excess electricity is sold to the market. (8) This system generates all the electricity used in the airport, and by contract all terminals must purchase electricity from the company until 2020. JetBlue is restricted to purchase these energy sources to KIAC, but the end of this contract presents an opportunity for JetBlue to change its electricity and thermal water sources. These prices are currently too expensive compared to the regular NYC prices (40-60 USD/MBTU) (9).

3. Literature Review

There is extensive literature on building efficiency, on-site electricity generation and strategies to reduce carbon emissions. Yet, specifically for airport operations, the main source of information was FAA reports as well as other government bodies. We reviewed successful case studies of greenhouse gas emissions reduction programs worldwide. Moreover, we explored the types of strategies that exist and the different factors considered to prioritize what practices to implement.

3.1. Review of Airport Solutions

3.1.1. Airport facility boilers, heaters, and generators

Examples: Antalya Airport (AYT), Dublin (DUB) & Cork (ORK) Airports

AYT had updated its old chiller system, which saved 30% energy when compared to the old one.

In DUB & ORK the pier's 12 Air Handling Units (AHU) were originally installed with carbon filters. After precise investigation it was discovered that these AHU were not required and then subsequently removed. Additionally, Dublin & Cork improvements resulted in a lower restriction to air flow, reducing the fixed speed of Variable Speed Drives (VSDs) to be slower whilst still achieving the same air change rate. The actions had saved approximately 380,000 kWh equivalents in energy consumption per annum (10).

3.1.2. Maintenance activities

Example: Seattle Tacoma International Airport

Between 2010 and 2013, **Seattle Tacoma International Airport** converted constant volume air handlers to variable volume, upgraded to more efficient lighting and escalators, optimized chiller sequencing, and implemented main terminal airside heat recovery. Though these actions **the airport** reduced total terminal electricity consumption by 7% (10).

3.1.3. Electrical consumption

Examples: Airports of Thailand, Antalya Airport, Toronto Airport, Columbus International Airport Honolulu International Airport

Airports of Thailand replaced old air conditioning with more energy efficient aircooled chiller, and had also replaced the old light bulbs with LEDs in 2014 (10).

Antalya Airport implemented two major practices to reduce energy consumption in IT systems: First is the replacement of CRT monitors at check-in desks and gate areas. These monitors change automatically onto stand by and offline modes if there are no flights. The second practice is the use of "Thin Client PCs" in all terminals for FIDS

monitors. Moreover, Antalya Airport had replaced all lights with LED lighting technologies at offices and general areas in the terminals. With this project, a 66% energy saving was achieved.

Toronto Airport had removed one T8 bulb from every two-lamp fixture, eliminating 2,000 bulbs, without customer complaints about inadequate lighting. Through this practice the Toronto Airport reduced by 40 percent the amount of energy for lighting in its terminal (10)

In addition, the energy-management system at **Port Columbus International Airport** in Columbus, Ohio, is programmed to turn off lighting and mechanical systems in gate areas where no flights are scheduled so that energy is not wasted on unoccupied areas of the building (10).

Voltage controllers and soft start controls can also reduce energy consumption and maintenance costs by varying the voltage to the motor during startup and according to the load. They are especially effective when motors run for long periods with minimal load. For example, **Honolulu International Airport** installed soft-start controls on 56 escalators and saved 281,921 kWh per year. This translated into annual cost savings of \$525 for each "up" escalator and \$496 per "down" escalator (11).

3.1.4. Ground Operations:

Examples: Airport of Thailand, Antalya Airport

Airport of Thailand encourages its drivers to turn off vehicle engines when not needed; to control vehicle speed to save fuel; and have a regular maintenance for fuel efficiency. In addition, the current car fleet of Airport of Thailand is due to be replaced by hybrid cars in the near future (10).

Starting from 2014, the company staff in **Antalya Airport** had already begun to use electric car-vehicles for transportation in/between terminals (10).

3.1.5. Ground Support Equipment (GSE)

Example: Aena S.A.

Adolfo Suárez Madrid-Barajas had reduced its electricity consumption in the Automated Baggage Handling System (SATE) by 2,369 MWh during 2012-2014, reducing 1,833 tons of CO2 (10) by optimizing the system circuits and an expanded use of timers and photo sensors to control circuits.

3.1.6. Renewable Energy: Solar Energy Technologies and Airport Applications

Solar photovoltaic costs have dropped significantly in the last decade, going from a niche technology to price parity with traditional sources. Figure 3 shows the locations where solar energy has reached grid parity.

Figure 3 Solar Energy Grid Parity Potential (12)

As the cost of installing solar panels decreased, airports have been seen as prime location for installing solar systems, since they usually have large areas un-obstructed by shade and have access to federal funding. Table 1 lists several examples of solar panel installations in different airports (13) (14).

Table 1 Examples of Airports	with solar panel installations
------------------------------	--------------------------------

Airport	Capacity Installed	Notes
Indianapolis International Airport in Indianapolis, Indiana	12.5 MW	Operating as of 2013
Fresno Yosemite Airport in Fresno, California	2 MW	Constructed in 2008, meets 60% of the electricity demand at the airport
Gatwick Airport in London, England	50 kW	Installed in 2012, just 150 meters from the runway, after 6 months of negotiation with the British aviation authorities to guarantee it did not affect airport safety
Birmingham Airport in Birmingham, England	50 kW	In the rooftop of the terminal
Athens International in Athens, Greece	8 MW	Installed in 2004 with a two-stage design to assure safety compliance

Airport	Capacity Installed	Notes
Ancona Falconara Airport in Falconara Marittima, Italy	45 kW	System was built around the tower, with several analytical studies to show it did not affect safety
Denver International Airport	8 MW	See description below
Manchester-Boston Regional Airport	530 kW	See description below
Cochin International Airport	12 MW	This airport became fully powered by solar panels in 2015

Examples : Denver International Airport and Manchester-Boston Regional Airport

Furthermore, there are two specific examples of larger solar systems installed in airports. The first is the Denver International Airport (DIA). This airport is the 11th busiest in the world by passenger traffic and installed three different systems. Through a series of public-private partnerships, three different companies installed and operated a part of the system (Table 2 (13)). A fourth stage is in development. In the references consulted no financial information was provided.

Table 2 Specifications	of the Systems	installed in DIA
------------------------	----------------	------------------

	DIA I	DIA II	DIA III
Capacity	2 MW DC	1.6 MW DC	4.3 MW DC
Annual Production	3.5 MWh	2.4 MWh	6.9 MWh
System	Flat single axis tracking	25 degree fixed tilt	25 degree fixed tilt
Total Panels	9,254 panels	7,250 panels	18,980

The second detailed example given was from the Manchester-Boston Regional Airport (MHT), in Manchester, NH (see Table 3). This system was designed to save \$100,000 in energy cost for the airport and was budgeted in \$3.5 million, of which 95% was funded by the FAA's Voluntary Airport Low Emissions Program (VALE) (15). In the references consulted no financial information was provided.

	МНТ
Capacity	530 kW DC
Annual Production	650,000 kWh

System	20 degree fixed tilt
Total Panels	2,210 panels

This project, however, did suffer from some problems due to glare (see Figure 4). Air traffic controllers complained within a month that for 45 minutes in the morning there would be glare in the tower. The system is being renovated to adjust to these problems.

Figure 4 Glare Effects at MHT (Source Sandia National Laboratory, apud. NREL (13))

A glare study tool was developed by the Sandia National Laboratory called SGHAT tool. This tool, which works as a web-application, allows airports and solar systems designers to input the location of the airport and the panel installation to calculate the effect of glare on the tower and aircraft at approach.

With the use of the tool, MHT decided to redirect the panels that were causing the glare 90°. It was calculated that this would decrease energy production by the solar panels by 10%.

3.2. Strategies to reduce carbon emissions

The Airport Corporate Research Program (ACRP) identified and categorized a list of strategies to reduce greenhouse gas emission for airports. These strategies were classified in Airfield Design and Operations, Business Planning, Construction, Carbon Sequestration, Energy Management, Ground Service Equipment, Ground Transportation, Materials and Embedded Energy, Operations and Maintenance, Performance Measurement, Renewable Energy (on-site) and Refrigerants, which are shown in Table 4. Additionally, the ACRP team developed tool called AirportGear, to prioritize the different strategies identified, making financial considerations such as capital costs, operation and maintenance costs, estimated payback period; and

implementation considerations, such as airport control, implementation timeframe and maturity of reduction strategy (16).

Category	Category Abbreviation	Number of Strategies	Coverage
Airfield Design and Operations	AF	18	Strategies that directly address emissions associated with airfield design and aircraft operations
Business Planning	BP	11	Airport administrative strategies designed to aid in emission reduction
Construction	CN	5	Construction process emission reduction strategies
Carbon Sequestration	CS	4	Strategies designed to capture carbon dioxide from the atmosphere and provide long-term storage
Energy Management	EM	39	Strategies designed to reduce facility energy consumption and provide alternative energy supplies
Ground Service Equipment	GS	1	Strategies designed to reduce emissions from vehicles that support aircraft and airport maintenance
Ground Transportation	GT	17	Strategies associated with the movement of passengers, employees, and goods/services to and from the airport
Materials and Embedded Energy	ME	4	Strategies associated with procurement and waste streams
Operations and Maintenance	ОМ	3	Strategies designed to address the operation and maintenance of airport facilities
Performance Measurement	PM	5	Strategies designed to evaluate performance of emission reduction plans and actions
Renewable Energy(on-site)	RE	14	Strategies to generate various forms of renewable energy(un, wind, geothermal, gas, etc.)
Refrigerants	RF	4	Strategies designed to address refrigerant use at airports and the associated greenhouse gases

Table 4 Categories of greenhouse gas emission reduction strategies (9)

4. Methodology

In order to estimate a greenhouse gas emissions reduction target, we interviewed professors within MIT to get their expertise and better understanding of our project (see details in Appendix A). We identified strategies and practices performed by other airports and airlines to review with JetBlue's stakeholders. We visited JFK-T5 and spoke with multiple stakeholders. Lastly, we estimated a current inventory of greenhouse gas emissions and the impact of a set recommendations to reduce carbon emissions (see Figure 5).

5. Greenhouse Gas Emissions Inventory at JFK-T5

Airlines account for around 2% of the global greenhouse emissions (17). Airlines' greenhouse emissions are largely driven by the jet-fuel burn by aircrafts. Although aircrafts spend between 10-30% of the time taxiing, that time only represents 5-10% of the emissions produced by the aircraft (18).

Since the scope of the project is specifically defined as JetBlue's emissions at JFK-T5, we decided to define the boundaries of the problem as the emissions they can manage working together with the Port Authority. Emissions out of JetBlue's decision making scope of action, such as public or private transportation going to and from the airport, emissions from the LTO cycle (take-off, climb, approach and landing processes) and taxi in/out were left aside for JetBlue's purposes, even when we recognize the narrow view of this particular scope.

Thus, as shown in Figure 6, the scope of this project includes: 1. Energy generation, considering specifically the Co-Gen plant on site; 2. Building efficiency and 3. Ground Operations, including the GSE and parked aircraft.

We estimated JFK T5 CO2 emissions by source (Table 5), using conversion factors applied in the case studies reviewed.

	Source	Description
Non Jet Fuel related	Electricity	Generated by the Co-Gen plant and bought by the airport. Billed monthly to JetBlue, used for the operation of the building and part of the ground operations
	Chilled water	Generated by the Co-Gen plant and bought by the airport. Billed monthly to JetBlue, used to cool the building as part of the HVAC system.
	Medium temperature water	Generated by the Co-Gen plant and bought by the airport. Billed monthly to JetBlue, used to heat the building and to meet medium temperature water demand from lavatories and other.
	Ground Support Equipment	The equipment and vehicles that support the operation of the airport, such as trucks, tractors, tugs, belt loaders, etc. It produces direct emission by the combustion of Diesel and Gasoline.
Jet Fuel Related	Aircraft - APU	The APU is a small engine that may remain on during the parking time at the airport to feed the aircraft with energy for controls and the HVAC system. It can be substituted by the GPU unit. It produces direct emission by the combustion of Jet-Fuel.

Table 5 Sources of CO2 emission

Figure 6 Scope of Greenhouse Gas emissions Inventory at JFK Terminal 5

The current CO2e inventory in JFK T5 taking into account JetBlue's operation only, is presented in Table 6. For further details, we included the calculations made to create this baseline and the assumptions in Appendix C. Though we limited the scope, our methodology seems to be robust and the results are in line with studies performed in other airports.

	Consumption / year		CO2e Metric Tons / year
Building Electricity Use	29,401,440	[KWh]	18,159
Chilled Water	73,068	[MBTU]	5
Mid Temperature Water	96,000	[MBTU]	8,500
Ground Support Vehicles	565,811	[Gallon diesel, gasoline]	5,383
APU	657,518	[Gallon jet-fuel]	6,474
Total			38,521

Table 6 Current CO2e Inventory in JFK T5, JetBlue scope

The main assumptions made to calculate APU emissions and their implications are shown below:

- Turnaround time: Depending on the fleet (35 min for A320, 40 min for A321 and 30 min for E190).
- Adherence of 50% in the GPU usage
- Delays were not considered; therefore, these emissions might be underestimating the actual emissions.

We delivered an automated Excel spreadsheet file to JetBlue, so they can fine tune the inputs with actual data from their databases to increase the accuracy of the estimates.

Figure 8 represents the inventory breakdown graph that JetBlue can present to its stakeholders, including the NYC Mayor's office in order to participate in the Carbon Challenge.

Figure 7 Inventory Breakdown

6. Actions Proposed

6.1. Energy Generation on Site: Installation of Solar Panel

To calculate the potential for solar panel installation at JFK-T5, we used a tool developed by the National Renewable Energy Laboratory (NREL) called PV Watts (19), which uses historical weather data and geographical information to measure potential generation of solar. Considering the area of the rooftop of T5, we estimated a potential for a 3,500 kW DC installation of 2-Axis tracking solar panels. Solar panel technology was chosen due to its higher efficiency, but different energy generation technologies should be evaluated to achieve the highest return on investment. According to the results of the tool, presented in Figure 8, a solar panel system could generate roughly \$600K of energy value per year, at the current price 10 cents per kWh.

RESULTS	5,970	6 ,504 kw	Vh per Year *
Month	Solar Radiation (kWh / m ² / day)	AC Energy (kWh)	Energy Value (\$)
January	3.78	356,746	35,675
February	4.99	417,910	41,791
March	5.63	510,539	51,054
April	6.71	575,926	57,593
Мау	7.05	614,078	61,408
June	7.80	643,341	64,334
July	7.71	651,021	65,102
August	7.19	612,862	61,286
September	6.29	524,194	52,419
October	5.33	470,150	47,015
November	3.32	292,087	29,209
December	3.32	307,650	30,765
Annual	5.76	5,976,504	\$ 597,651

Figure 8 Electricity generation with a 3,500 kW DC system in the JFK area (19)

The capital investment was estimated based on average prices (\$/kW DC) from databases. NREL lists for NY a capital investment of \$2.6 / W DC for solar systems, though the investment would possibly be higher due to the 2-Axis tracking system chosen for the simulation. At this level, total investment would be at about \$9 million. This price, however, considers the full price of installation, not including any government subsidy for clean energy. The FAA has the Voluntary Airport Low Emissions Program (VALE). This program allows airports to use Airport Improvement Program (AIP) funds and Passenger Facilities Charges (PFC) to finance clean energy projects, often funding over two-thirds of the total investment (20).

Assuming that JetBlue can access these funds, it could achieve 14% emission reduction per year (Table 7). This evaluation only considers the installation of solar panels on the rooftop of T5.

Current Electricity Price (\$/kWh)	\$0.10
System Capacity (kW DC)	3500
Investment per kW DC	\$2,600.00
Total Investment	\$9,100,000.00
VALE and other grants funding	70%
JetBlue Investment	\$2,730,000.00
Annual Energy Generation (kWh/year)	5,976,504

Table 7 Summar	1 01	f Potentia	l Solar S	System	pro	iect
				,,	P . C	,

Cost Savings per Year	\$600,000
Pay-back Period	4.55
Emission Reduction per Year	14%

At JFK Airport there are other areas with a large potential for solar panel installation. To the Southeast of T5 there is a large area between the two main runways, which could house a large utility-scale solar energy plant. Using the NREL tool, we estimated that there is a potential for a 12,000 kW DC installation in that area, producing 85 GWh/year of electricity. Since this would be an installation too large for JetBlue to implement alone, it should be evaluated as a potential add-on to the new co-gen facilities.

6.1.1. Additional considerations: End of Lease of the Current Co-Generation Plant

We assumed that after 2020 (see Section 3.1.6), even if a new cogeneration plant is installed on site, JetBlue will be allowed to purchase electricity on the competitive market. There are two potential actions related to the end of the co-generation plant contact. The first is to use the large area between the two runways to install a large solar power generation facility. The second is to use the lower electricity prices from the competitive market to finance the purchase of renewable energy credits.

a. Large Solar Power Installation

Using the PV Watts tool mentioned above, we calculated the electricity potential for the large are between the two runways at JFK Airport, see Figure 9.

Figure 9 Map of the JFK Airport (Source JFK)

The estimated power that could be generated using this area is 48,000 kW DC. Even considering a loss from height restrictions, a solar power plant with a capacity for 40,000 kW DC is technically feasible. Additionally, considering weather variations, the expected electricity produced from this system could reach 68M kWh/year (Figure 10).

RESULTS	68,366	64,715,596 to 72,639,258kW Clici	/h per Year *
Month	Solar Radiation (kWh / m ² / day)	AC Energy (kWh)	Energy Value (\$)
January	3.78	4,080,916	408,092
February	4.99	4,780,167	478,017
March	5.63	5,840,183	584,018
April	6.71	6,588,158	658,816
Мау	7.05	7,024,588	702,459
June	7.80	7,359,337	735,934
July	7.71	7,447,196	744,720
August	7.19	7,010,687	701,069
September	6.29	5,996,383	599,638
October	5.33	5,378,164	537,816
November	3.32	3,341,285	334,128
December	3.32	3,519,302	351,930
Annual	5.76	68,366,366	\$ 6,836,637

Figure 10 Electricity Generation at the large area between the runways (19)

Subsequently, we compared the capacity of this solar system with the capacity of the current system (Table 8).

Table 8 Capacitv	Comparison	between	solar system	proposed	and	current s	vstem
				. .			

Current Co-gen system power	107	MW
Hours per Year	8497.2	h
Current Total Electricity Production	909,200,400	kWh/y
Potential solar energy generation	68,366,360	kWh/y
Potential fraction of energy from solar	7.5%	

With this new system 7.5% of the electricity produced in the airport and purchased by JetBlue would come from a carbon-neutral source.

It is important to note that this system would produce three times the amount of electricity that JetBlue uses. It also requires a large upfront investment from JetBlue, in an area beyond its control, thus it should work with other stakeholders to create the financial conditions for it. A complete proposal for replacement of the cogeneration plant is beyond the scope of this report, including its financial implications and a business case.

b. Renewable Energy Credits

If JetBlue were to purchase electricity in the open market, the company could procure renewable energy credits to offset reduce local emissions.

The price of renewable energy credits in New York is 1 to 2.5 cents per kWh (21). For the purpose of this simulation we assumed that JetBlue could purchase credits for 1 cent per kWh due to the company's capacity of making large purchases.

According to the US Energy Information Agency, electricity prices for commerce and industry in the Northeast area are 9.5 and 7.5 cents per kWh respectively, which are lower than the current 10 cents per kWh paid by JetBlue (22). Part of the savings resulted from changing to the open market could be directed to renewable energy credits. Table 9 below describes this business case.

Current Electricity Price	10	¢/kWh
Electricity Price in the open market in 2020	9	¢/kWh
Price of Renewable Credits	1	¢/kWh
Percentage of savings from lower electricity prices used to purchase renewable energy credits	50%	
Fraction of Electricity from Renewables	5%	

Table 9 Description of Business Case for Renewable Energy Credits

6.2. Building Efficiency

This section will explore the potential actions for emission reductions for the building operations at JFK-T5.

6.2.1. Data Analytics Technology for HVAC Control

One of the main drivers of energy cost and emissions for building operations at JFK Airport – Terminal 5 is the heating, ventilation and air conditioning (HVAC) system, totaling one third of the emissions generated by the building.

Optimizing the operation and maintenance of the system is one of the main drivers to achieve lower costs and better use over long periods of time. Degradation in the HVAC system can be a large source of preventable emissions, even in the new T5 building.

Several new solutions have been created recently, leveraging current information systems and proposing data analytics to improve the operation and maintenance of HVAC systems. We recommend JetBlue to evaluate the wide range of intelligent building energy management systems. One example of such solutions is Clockworks[™], which is a software developed by a start-up called KGS Buildings that specializes in energy efficiency for buildings.

The software uses data collected from existing commercial building management to predict maintenance needs and potential operational improvements. Figure 11 includes a diagram with the architecture of such software.

Figure 11 Architecture of the Clockworks software (Source: KGS Buildings)

A case study presented in the company's website claims that the software identified faulted sensors that were generating simultaneous heating and cooling, as well as a number of small air leakages that increased the load across the system, even at a relatively new building. Two case-studies are presented in

Table 10.

Building Type	Area	Building Age	Reported Savings	Percent Improvement
Research Laboratory	450,000 sq. ft.	5 years	\$286,000 per year	8%
University Campus	10,000,000 sq. ft.	Variable	\$1 million per year	Not Informed

Table 10 Clockworks case-studies	(23)
	~~	/

JetBlue buys heating and cooling water from the cogeneration plant so T5 does not have individual heating and cooling equipment. As such, to be conservative, we assumed that implementing this or a similar system could generate potential energy savings of half of the improvement achieved in the case exposed, shown in Table 11. Therefore, this system will cut current CO2 emissions by 339 tons/year.

Current CO2e Emission from the HVAC System	8,472 metric Tons/year	
Reduction Potential	4%	
Potential CO2 emission savings	339 metric tons/year	

Table 11 Potential CO2 savings using Clockworks or a similar system

6.2.2. Air Leaks

Air leakage control is an important part of energy efficient buildings, but it is also very easy to be ignored. However, a tight structure of the building can help the airport to save on HVAC costs due to less heat loss, have a more effective ventilation system, protect the building from mold and rot from excess humidity, and reduce required HVAC capacity.

Air infiltration is a major source of wasted energy. Infiltration means the unintentional or accidental introduction of outside air into the building, typically through cracks in the building envelope and through use of doors for passengers. It is caused by wind, stack effect due to the temperature difference of the indoor and outdoor, and mechanical equipment such as blowers and ventilation which can generate pressure difference in the building (24).

During our visit to T5 we noticed several air leakage spots, especially from gaps in emergency exit window & door frames. Also, we saw a gate door opened allowing cold air coming into the building before starting passenger boarding (see Appendix D). Those leaks can be reduced by simple measures such as closing the door in time and replacing the old material in the frame. But air leakage can also be found in ventilation and air sealing. To control air leakage, we suggest that the airport consider using aerosol (spay foam) sealing on the existing units. Lawrence Berkeley National Laboratory testing demonstrated that aerosol sealing can reduce leakage by a factor of 5 to 8. Aerosol duct sealing is easy to use compared with traditional methods, such as applying mastic, because it eliminates the need to open wall, floor, and ceiling cavities to access hard-toreach leaks (25).

6.2.3. Lighting Efficiency

According to the Energy Information Agency, 19% of the electricity used in commercial buildings in the US is used for lighting (26). Though specific numbers for T5 were not available for this report, we assumed that JetBlue uses the same proportion of total electricity for lighting.

From interviews performed during our visit, we learned that no LED are used in T5, that all lighting is fluorescent and that, given the non-stopping operations, lights needed

to be on the entire day due to JetBlue policy regarding consumer experience. Hence, we in the following subsections we describe two actions to increase energy efficiency: updating the light bulbs to LED lighting and/or installing lighting sensors.

a. LED Lights

LED lights use 10 W of power for the same illumination capacity of a 15 W fluorescent bulb (27). Such bulbs also have an advantage in terms of bulb life, with an average life of 25,000 hours, compared to the 10,000 of fluorescent bulbs. The lower energy consumption and longer life significantly reduce the operational cost of lighting compared to the current alternative. However, JetBlue's facilities team mentioned that a previous study showed that replacing the current bulbs before the end of their useful life is not economically feasible due to labor costs.

One strategy is to replace the light bulbs to LED bulbs as they need to be changed. Considering a life of 10,000 hours and assuming that at least 50% of light bulbs need to be replaced every year, we estimate a 3.2% of energy savings in the first year and 6.3% in the second year (Table 12).

Fraction of Bulbs Replaced in the First Year	50%
Fraction of Bulbs Replaced in the Second Year	100%
Fraction of Electricity Used for Lighting	19%
Power of Current Bulbs	15 W
Power of LED Bulbs	10 W
Energy Savings in the First Year	3.2%
Energy Savings in the Second Year	6.3%

Table 12 Energy S	avings from	Replacing	Lighting
-------------------	-------------	-----------	----------

b. Sensors for Lighting Control

During our visit to T5 we noticed that despite good lighting from natural sources, most light bulbs were still on (Figure 12).

Figure 12 Lights on during a bright day in an area with natural lighting (Source: Authors)

We understood that JetBlue is not willing to use motion sensors in the passenger space because during the night customers could feel uncomfortable. Thus, we propose the use of light sensors to dim or turn off the lights during bright days in areas where natural lighting is available. We estimate that the potential energy savings for this solution will be around 2% of the current energy consumed in lighting (see Table 13).

Fraction of Electricity Used for Lighting	
Average Hours per Day with Adequate Natural Lighting	8 hours
Percentage of bulbs in areas with adequate natural lighting	
Potential Savings	2%

6.3. Ground Operations

In this section we included the solutions involving operational changes. First we analyzed the acquisition of GSE powered by alternative fuel vehicles, then we briefly describe other operational changes, which benefits are harder to quantify.

a. Purchasing electric GSE

According to our review of the different actions taken by airports and airlines, there is a wide range of possibilities to reduce greenhouse emissions in terms of GSE. Among these practices, a common measure is to replace the use of Air Conditioning Units (ACUs), Ground Power Units (GPUs) and Air Start Units (ASUs), traditionally dieselpowered, by fixed preconditioned air (PCA) systems and 400 Hz electrical systems, which use electricity from the gate/building. Traditionally, because GSE are non-road vehicles, regulations are not stringent and GSE do not have retro-fitted "closed-loop", which are emission control technologies to improve emissions on older diesel engines. So, a company might have different "low-hanging fruit" initiatives that can reduce carbon emissions. These initiatives include the implementation of exhaust after-treatments, such as oxidation catalysts, three-way catalytic converters and particulate traps. Moreover, incentivizing and training operators to turn off the engine of these vehicles, and avoiding idling longer than five minutes could reduce emissions in the long-term.

Nonetheless, airlines and airports are increasingly updating and/or converting their GSE to alternative fuel vehicles. Higher greenhouse gas emission reduction is achieved by eliminating the use of diesel or gasoline all together. Considering the variety of alternative fuel vehicles available, the most usual and effective practice is to change to vehicles powered by electricity (see Table 14). The greatest benefit of using electric vehicles is the reduction of energy and maintenance. Also, shifting to electricity eliminates the dependence on fossil fuels—if the electricity is produced from renewable sources.

Fuel	Type of Implementer	Implementer	
Biodiesel	Airport	Lambert-St. Louis International Airport (STL)	
	A	Dallas-Fort Worth International Airport (DFW)	
CNG	Airport	Portland International Airport (PDX)	
		Denver International Airport (DIA)	
and hybrid	Airport	Phoenix Sky Harbor Airport (PHX)	
		Salt Lake City International Airport (SLC)	
		American Airlines	
		Continental Airlines	
	Airline	Delta Air Lines	
		Horizon Air	
		Southwest Airlines	
		United Airlines	
		United Parcel Service	
	US Airways	US Airways	
Electric		Boston Logan International Airport (BOS)	
		Charlotte Douglas International Airport (CLT)	
		Detroit Metropolitan Wayne County Airport (DTW)	
	.	George Bush Intercontinental Airport (Houston) (IAH)	
	Airport	John Wayne Airport (SNA)	
		Lehigh Valley International Airport (ABE)	
		Louisville International Airport (SDF)	
		New York LaGuardia Airport (LGA)	
		Oakland International Airport (OAK)	

Table 14 Examples of Airlines and Airports using alternative fuels in GSE (28)

		Philadelphia International Airport (PHL)		
		Sacramento International Airport (SMF)		
		San Francisco International Airport (SFO)		
		Seattle-Tacoma International Airport (SEA)		
		Westchester County Airport (HPN)		
Hybrid	Airline	Alaska Airlines		
Solar-powered hydrant carts	Airport	Indianapolis International Airport (IND)		
Initiative/Fuel	Airport	Atlanta Hartsfield-Jackson International Airport (ATL)		

A major drawback is the upfront capital cost, but this cost can be offset depending on multiple factors, such as the type of GSE, the purchase price, available funding, type of fuel used, life-cycle cost savings, and infrastructure costs. When no funding is provided, the payback time for electric GSE ranges from 3 to 7 years. The payback time can be reduced by sharing costs with other airlines and/or applying to the multiple existing grants, namely the VALE program (28).

According to the inventory of GSE (**Error! Not a valid bookmark self-reference.**), 50% of the motorized GSE owned by JetBlue operating in JFK airport are either Bag Tug, Belt Loader or Push Back.

Figure 13 JFK Motorized GSE by Type (Source: JetBlue)

Following the methodology use by Lindenfeld (29), we estimated the Net Present Value of the acquisition of electric vehicles. From conversations with JetBlue we knew that around 70% of the total gallons of diesel and gasoline were consumed by Bag Tugs,

Belt Loaders and Pushback Tugs. Therefore, in our analysis we only considered the purchase of these types of equipment. According to an average useful life of 13-year and other assumptions detailed in Appendix E, such as a 20% of salvage value of the equipment to be used in other airports; the NPV for this initiative is positive at a 15% discount rate, even without considering governmental grant. The potential savings of this solution will be roughly 32% of CO2 emissions (Table 15).

Capital investment	\$(5,818,147.45)
Fuel savings	\$6,019,465.14
Electricity cost	\$(2,260,510.85)
Operational & Maintenance cost savings	\$1,743,293.73
Salvage cost (20% of new equipment)	\$1,452,020.00
Total NPV (average useful life of this vehicles = 13 years)	\$134,810.00
% CO2 emissions saved (metric ton)	32%

Table 15 Potential savings from purchasing GSE electric vehicles

Worth noting that JetBlue started a pilot acquiring 2 electric belt loaders, 1 bag tug and a charger station in 2015 and that the results of this pilot are successful so far. JetBlue is planning to complete its application to a VALE grant for this project, which could cover the cost of charging stations not included in this analysis.

b. Jet-Fuel related actions

Jet fuel is the most important source of carbon emissions for airlines in general, but for this inventory we only considered the emissions associated to the use of APU to generate energy while the aircraft is parked.

The literature in aviation is rich in practices and methods to decrease taxi times and thus emissions. However, the problem normally is the operational complexity and the coordination that is needed among different airlines to push any new procedure.

Several best practices are being implemented by different operators around the globe. A brief description of the most relevant actions the industry is integrating as part of the recommended practices are shown below.

Single Engine Taxi

Aircraft movement while on the ground typically represents 10 to 15 percent of total aircraft emissions. When aircraft taxi, the use of power from all engines is not required. To reduce fuel consumption and emissions, some aircraft can taxi on a single engine, turning off one engine or reduced engine power. Additionally, the engine that is running will operate at a higher number of RPM, which results in a more efficient operation, and lower emissions of hydrocarbons and carbon.

Airport operators are not allowed to mandate single engine taxi because of safety reasons, given that some aircrafts are not able to move forward safely with only one engine. Instead, collaborative discussions are the common way to approach this issue encouraging single engine taxi when possible, getting support of several carriers since it represents also fuel consumption reduction.

JetBlue stated that this practice is being done regularly, but the team has not had access to adherence data at the moment of writing this report.

Reduction of Airport congestion on surface

Airport surface congestion increases not only taxi times –which is annoying for customers– but also increases the time while the aircraft is burning fuel with no value, besides producing a huge amount of carbon emissions. Therefore, reduction of the congestion is key to minimize the greenhouse emissions at airports.

Researchers from MIT published in 2011 a study called "Demonstration of Reduced Airport Congestion Through Pushback Rate Control" (30) that controls the rates pushbacks are released to move aircrafts from gates to avoid the airport to enter into a *congested state,* plus avoiding unnecessary time spent taxiing to the runway. This procedure was tested in Boston Logan airport with positive results; and JetBlue's Operations team stated that they knew about the findings, they have already a system in place managed by the Port Authority and a contractor called Sensis, which during peak departure periods manages the length of the queue for takeoff at the runway by metering. In order to reduce time and congestion on the taxiways, flights are held on the gate or in the ramp area until a designated slot time, which is somehow similar to the procedure tested in Boston Logan.

Ground Power Unit

This activity is the only one affecting the current inventory. While at the gate, aircraft require energy to power control systems and the HVAC system. When no backup system is in place, aircraft use the APU (Auxiliary Power Unit), which is basically a small turbo-shaft engine that runs on jet fuel, burning 35 gallon of jet fuel per hour of operation. Diesel or kerosene engines are more efficient in providing this energy (in terms of cost and carbon emissions, burning 1.7 gallons per hour), thus, the maximization of the use of the GPU unit (Ground Power Unit) is key to reduce carbon emissions.

Assuming an 10% increase on the usage of the GPU, JetBlue could reduce the carbon emissions associated to the use of APU by 20%.

Operational adherence

The majority of the main initiatives in terms of fuel consumption reduction have been adopted by JetBlue (GPU usage, Single Engine Taxi, limited reverse thrust usage). Nevertheless, the team could not have access to operational data that shows how well these initiatives have been implemented. This does not seem to be related to access to sensible or confidential data, but more with the difficulty to obtain it, meaning it is not highly visible. Given the sensitivity of the emissions to the jet fuel burn, it is indispensable make this information visible to everyone, make them embedded in the performance targets of the related teams and push for operational excellence in those terms.

7. Target recommended and Conclusions

Considering the inventory and the potential actions presented previously, we calculated the target for emission.

The first step is to calculate the total emission reduction potential of all the actions proposed should they be adopted fully. Table 16 show the distribution of emission for each type of energy source, as used in the inventory above.

Type of Energy	Electricity	Chilled Water	Mid Temp.	Gasoline /Diesel	APU	Total
Total Emissions	18,159	5	8,500	5,383	6,474	38,521
Fraction of Total Emissions	47%	0.01%	22%	14%	17%	100%

Table 17 shows the potential of reduction of each action to each type of energy.

Solution	Electricity	Chilled Water	Mid Temp.	Gasoline /Diesel	APU	Total
Solar Panels	-14%	0%	0%	0%	0%	-7%
Purchase of Renewable Credits	-5%	0%	0%	0%	0%	-2%
Large Solar Installation	-8%	0%	0%	0%	0%	-4%
Data Analytics Technology for HVAC Control	0%	-4%	-4%	0%	0%	-1%
Lighting - LED Bulbs	-6%	0%	0%	0%	0%	-3%
Lighting - Sensors	-2%	0%	0%	0%	0%	-1%
Switch to Electric GSE	10%	0%	0%	-70%	0%	-5%
Operation Adherence and use of GPU	0%	0%	0%	0%	-20%	-3%
Total Savings	-25%	-4%	-4%	-70%	-20%	-26%

Table 17 Reduction of each action per type of energy

Since the percentages presented in Table 17 are relative to each source of energy, we estimated the percentage of carbon emissions relative to the total amount of carbon

emissions produced currently in T5. The breakdown of CO2 emission reduction per energy source and our recommended target is shown in Figure 14.

Figure 14 Breakdown of CO2 emission reduction by energy source

It is important to note that this reduction assumes all actions are put in place. Table 18 shows a potential implementation schedule of those actions, which would result on a paced reduction of CO2e emissions.

Adoption of Each Action	2016	2017	2018	2019	2020	2021
Solar Panels	0%	30%	60%	100%	100%	100%
Purchase of Renewable Credits	0%	0%	0%	0%	50%	100%
Large Solar Installation	0%	0%	0%	0%	0%	100%
Data Analytics Technology for HVAC Control	0%	100%	100%	100%	100%	100%
Lighting - LED Bulbs	0%	50%	100%	100%	100%	100%
Lighting - Sensors	0%	100%	100%	100%	100%	100%
Switch to Electric GSE	0%	0%	50%	100%	100%	100%
Operation Adherence and use of GPU	100%	100%	100%	100%	100%	100%
Total Emission Reduction	-3%	-9%	-15%	-20%	-21%	-26%
Emissions as a Fraction of Current	97%	91%	85%	80%	79%	74%

Table 18 Implementation Schedule

As presented in Figure 15, the emissions from JFK-T5 over the next years will decrease to 74% of its current carbon emissions.

Figure 15 Projection of Emissions at JFK - T5 with this adoption strategy

To summarize, JetBlue has a potential to reduce its emissions related to the operations in JFK T5 by 26% in the next five years. We hope that this result serves as a basis to present a reasonable target to its stakeholders, specially the NYC Mayor's Office. Through these changes, JFK T5 would also be at the same level as the most advance airports in terms of technologies for carbon reduction.

Bibliography

1. Lindenfeld, Sara. Kick-off call. Boston, March 16, 2016.

2. JetBlue Airways. The Blue Review - Environmental, Social and Business Responsibility. *JetBlue Responsibility Report 2014*. [Online] 2015. https://www.jetblue.com/p/JetBlueResponsibilityReport2014.pdf.

3. LexisNexis. JetBlue Airways Corporation. One Source - Global Business Browser. [Online] 2016. http://globalbb.onesource.com/web/Reports/ReportMain.aspx?ftrId=UNIFIEDOVERVI EW&Process=CP&KeyID=44467043&Expand=BusDesc#BusDesc44467043.

 4. Dunalp, David W. Saarinen Terminal to Reopen at Kennedy Airport. City Room .

 [Online]
 February
 2008,
 2008.

 http://cityroom.blogs.nytimes.com/2008/02/21/saarinen-terminal-to-reopen-at-kennedy-airport/?_r=0.
 Kennedy-airport/?_r=0.

5. **The Port Authority of NY & NJ.** Airport Traffic Report. [Online] 2013. https://www.panynj.gov/airports/pdf-traffic/ATR2013.pdf.

6. **NYC Resources.** MAYOR BLOOMBERG, PORT AUTHORITY AND JETBLUE CUT RIBBON ON NEW \$875 MILLION TERMINAL AT JFK AIRPORT . *News from the Blue Room.* September 22, 2008.

7. JetBlue Airways. Terminal 5 at JFK. [Online] http://www.jetblue.com/travel/jfk/.

8. **The Port Authority of NY & NJ.** Request for information for replacement, rehabilitation or redesign of the cogeneration plant and related infrastructure at John F. Kennedy International Airport. [Online] May 8, 2015. https://www.panynj.gov/business-opportunities/pdf/RFIDOC_37799.pdf.

9. Manager, Facilities. Visit to JFK. New York, April 1, 2016.

10. Airport Carbon Accreditation. Annual Report 2014-2015. Airport CarbonAccreditationAnnualReports.[Online]2015.http://www.airportcarbonaccreditation.org/library/annual-reports.html.

11. Touchstone Energy Cooperatives. Lowering Energy Costs at Airports. BusinessEnergyAdvisor.[Online]2015.http://bea.touchstoneenergy.com/sites/beabea/files/PDF/Sector/Airports.pdf.

12. Frankel, David, Ostrowski, Kenneth and Pinner, Dickon . The disruptive potential of solar power. *McKinsey Quarterly.* [Online] McKinsey, September 2014. http://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/the-disruptive-potential-of-solar-power.

13. Kandt, A. and Romero, R. Implementing Solar Technologies at Airports. NationalRenewableEnergyLaboratory.[Online]July2014.http://www.nrel.gov/docs/fy14osti/62349.pdf.

14. **Menon, Supriya.** How is the world's first solar powered airport faring? *BBC News.* [Online] October 9, 2015. http://www.bbc.com/news/world-asia-india-34421419.

15. Federal Aviation Administration. Voluntary Airport Low Emissions Program (VALE) Airports. *Voluntary Airport Low Emissions (VALE) Program.* [Online] February 29, 2016. http://www.faa.gov/airports/environmental/vale/.

16. Transportation Research Board. Report 56: Handbook for Considering PracticalGreenhouse Gas Emission Reduction Strategies for Airports. Airport Cooperate ResearchProgram(ACRP).[Online]2011.http://onlinepubs.trb.org/onlinepubs/acrp/acrp_rpt_056.pdf.

17. **Air Transport Action Group.** Air Transport Action Group. [Online] http://www.atag.org/facts-and-figures.html.

18. Evaluation of Strategies for Reducing Taxi-out Emissions at Airports. Deonandan, Indira and Balakrishnan, Hamsa. 2007.

19. National Renewable Energy Laboratory . PVWatts Calculator - Solar Resource Data. [Online] U.S. Department of Energy. http://pvwatts.nrel.gov/pvwatts.php.

20. Federal Aviation Administration.Voluntary Airport Low Emissions Program(VALE)Airports.[Online]February29,2016.http://www.faa.gov/airports/environmental/vale/.

21. **Shahan, Zachary.** New Yorkers Can Now Buy Renewable Energy Certificates (RECs) Online. *CleanTechnica*. [Online] December 1, 2009. http://cleantechnica.com/2009/12/01/new-yorkers-can-now-buy-renewable-energy-certificates-recs-online/.

22. **U.S. Energy Information Administration.** Short-term energy and summer fuels outlook. *Independent & Statistics Analysis.* [Online] April 12, 2016. http://www.eia.gov/forecasts/steo/.

23. **KGS Buildings.** KGS has provided solutions to buildings big and small, solving the needs of multiple stakeholders. [Online] 2016. http://www.kgsbuildings.com/solutions/our-work.

24. **U.S. Department of Energy.** Building Technologies Program: Air Leakage Guide. [Online] 2011. https://www.energycodes.gov/sites/default/files/documents/BECP_Buidling%20Energ y%20Code%20Resource%20Guide%20Air%20Leakage%20Guide_Sept2011_v00_lores. pdf.

25. **Transportation Research Board.** Report 42: Sustainable Airport Construction Practices. *Airport Cooperate Research Program (ACRP)*. [Online] 2011. http://onlinepubs.trb.org/onlinepubs/acrp/acrp_rpt_042.pdf.

26. **U.S. Energy Information Administration.** How much electricity is used for lighting in the United States? *Frequently Asked Questions.* [Online] April 16, 2015. https://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3.

27. **U.S. Department of Energy.** How energy-efficient light bulbs compare with traditional incandescents. [Online] http://energy.gov/energysaver/how-energy-efficient-light-bulbs-compare-traditional-incandescents.

28. **Transportation Research Board Report.** Report 78: Airport Ground Support Equipment (GSE): Emission Reduction Strategies, Inventory, and Tutorial. [Online] 2012. http://onlinepubs.trb.org/onlinepubs/acrp/acrp_rpt_078.pdf.

29. Lindenfeld, Sara and Tran, Michelle . An Economic & Environmental Analysis of the JetBlue Airways Ground Support Vehicles: A Proposed Implementation of a Cleaner-Burning Fleet. Nicholas School of the Environment of Duke University. 2015.

30. Demonstration of Reduced Airport Congestion Through Pushback Rate Control. Simaiakis, I., et al. 2011.

31. **U.S. Department of Transportation FAA.** Voluntary Airport Low Emission Program Technical Report. [Online] December 2, 2010. https://www.faa.gov/airports/environmental/vale/media/vale_techreport_v7.pdf.

32. **Sustainability Aviation Guidance Alliance.** Encourage aircraft to taxi with less than all engines operating, where appropriate. [Online] http://www.airportsustainability.org/practice/664.

33. **Energy Information Administration.** How Much Electricity is Used for Lightning in the United States? FAQ. [Online]

Appendix A: List of Greenhouse Gas Reduction Strategies

Priority	Numerical Score*	Greenhouse Gas Reduction Strategy Name and Number			
1	81	RE-03	Install Solar Thermal Systems for Hot Water Production		
2	81	EM-08	Use Thermal Imaging to Identify Energy Losses		
3	81	EM-06	Develop and Market an Energy Conservation Program for Building Users		
4	81	BP-03	Develop a Climate Action Plan (CAP)		
5	81	RF-01	Replace Refrigerants with Natural or Lower Global Warming Potential (GWP) Gases		
6	78	CS-04	Invest in Terrestrial Carbon Sinks		
7	78	CN-03	Implement a Construction Vehicle Idling Plan		
8	78	BP-08	Use Airport-Specific Sustainable Planning, Design, and Construction Guidelines		
9	78	EM-18	Implement a Lighting System Energy Conservation Program		
10	78	BP-10	Set a Policy for Green Building Certification for Buildings		
11	78	EM-31	Purchase ENERGY STAR Equipment		
12	78	EM-38	Install Window Awnings or Sunshades		
13	78	EM-39	Utilize Sophisticated Energy Models for Building Design		
14	75	EM-37	Incorporate Use of Natural Ventilation and Economizer Control		
15	75	EM-10	Change Set Points or Exclude Selected Zones from Heating and Cooling		
16	75	RF-02	Incorporate Intelligent Fault Diagnosis for HVAC Refrigerant Systems		
17	75	RF-04	Install Microchannel Components and Heat Exchangers		
18	72	GS-01	Support Alternatively Fueled Ground Service Equipment (GSE)		
19	72	EM-01	Develop a Strategic Energy Management Plan		
20	72	EM-07	Evaluate Fuel Mix		
21	72	RE-01	Install Building Integrated Photovoltaic (BIPV) Panels		
22	72	EM-24	Install Variable Speed Drives (VSD) and Optimize Controls of Pumps for Air Handling Units		
23	72	EM-30	Reduce Transmission Losses in Electrical Wires		
24	72	EM-03	Develop Energy Performance Contracting Partnerships		
25	72	EM-25	Install Evaporative Cooling Systems		
26	72	RE-14	Utilize Local Landfill Gas		
27	72	EM-13	Install a Cool Roof		
28	72	EM-14	Design Building Orientation for Energy Use Reduction		
29	72	АГ-12 DE 12	Support Modernization of Alf Traine Management (ATM)		
21	72	AE 17	Support Fuel Efficiency Targets for Aircraft		
32	60	FM-21	Install High-Efficiency Equipment and Controls		
33	69	EM-29	Design for Larger Diameter Pining		
34	69	EM-17	Install LED Runway and Taxiway Lighting		
35	69	EM-22	Integrate Thermal Storage into Heating and Cooling Systems		
36	69	BP-05	Create a Carbon Offset Purchasing Strategy		
37	69	RF-03	Use Hydronically Coupled Vapor-Compression Heat Pumps		
38	69	EM-28	Install a Heat Recovery System		
39	69	RE-13	Construct a Hydrogen Fueling and Generation Station		
40	69	RE-02	Install Building-Mounted or Ground-Mounted Solar Photovoltaic (PV) Panels		
41	69	CN-05	Specify Energy Efficient Temporary Lighting During Construction		
42	69	CN-02	Recycle and Reuse Construction and Demolition Materials		
43	69	OM-01	Create a Detailed Operations and Maintenance Manual		
44	69	EM-09	Improve Insulation of Building Envelope		
45	69	EM-02	Specify Energy Efficiency Requirements for Equipment in Contract Agreements		
46	69	GT-15	Support Conversion of Tenant Fleet Vehicles to Alternatively Fueled Vehicles		
47	67	GT-02	Provide Preferential Car/Vanpool Parking for Employees		
48	67	AF-14	Support Single/Reduced Engine Taxiing		
49	67	GT-17	Support Alternatively Fueled Taxis		
50	67	GT-03	Promote Public Transit to the Airport		
51	67	EM-11	Restrict Heating and Cooling to Lowest 10 ft of Indoor Space		
52	67	EM-32	Enhance Piping Insulation		

Priority	Numerical Score*	Gi	reenhouse Gas Reduction Strategy Name and Number
53	67	AF-04	Design Runways, Taxiways, Ramps & Terminals to Reduce Aircraft Taxiing Distances
54	67	GT-16	Support Alternatively Fueled Vehicles for Rental Cars and Commercial Vehicles
55	67	GT-13	Promote Bicycle Use by Employees
56	67	GT-14	Convert Airport Fleet Vehicles to Alternatively Fueled Vehicles
57	67	EM-35	Install Energy Efficient Elevators, Escalators and Autowalks
58	67	BP-01	Use Greenhouse Gas Impact Evaluations as Decision-Making Criteria
59	67	EM-23	Evaluate and Upgrade the Central Plant and Distribution System Equipment
60	67	AF-18	Support the Use of Paperless Ticket Technology
61	67	BP-06	Develop and Apply or Sell Carbon Offsets
62	67	RE-09	Install Building-Mounted Wind Turbines
63	67	CN-01	Use Warm Mix Asphalt (WMA) in Place of Hot Mix Asphalt
64	67	EM-16	Apply Thermochromic Coatings on Buildings
65	67	EM-19	Install a Building Automation System (BAS)
66	67	EM-15	Apply Solar Reflective Paint
67	67	AF-09	Implement Emission-Based Incentives and Landing Fees
68	67	AF-11	Support Optimized Departure Management on Existing Runways
69	64	GT-10	Allow Flexible Work Schedules for Employees
70	64	PM-01	Conduct Regular Greenhouse Gas (GHG) Emission Inventories
71	64	ME-01	Develop an Integrated Solid Waste Management Plan
72	64	GT-01	Provide Priority Vehicle Parking for Emissions Friendly Vehicles
73	64	ME-04	Separate and Compost Food Waste
74	64	ME-02	Start or Enhance a Waste Reduction or Recycling Program
75	64	AF-02	Minimize the Use of Auxiliary Power Units (APUs)
76	64	BP-02	Develop an Airport Expansion and Development Greenhouse Gas Emission Policy
77	64	EM-12	Install Green Vegetated Roofs for Greater Building Insulation
78	64	CN-04	Specify Low-Emission Construction Vehicles and Equipment
79	64	AF-03	Design Airside Layout to Reduce Aircraft Delay and Surface Vehicle Congestion
80	64	EM-27	Install Ultraviolet-C (UVC) Lights in Air Handling Units (AHUs) for Continuous Coil Cleaning
81	64	CS-01	Install Sustainable, Long-Term Vegetation
82	64	GT-06	Alter Parking Pricing Structures for Employees and Passengers
83	61	AF-08	Create Partnerships with Intercity Rail Services to Optimize Passenger and Cargo Movement
84	61	BP-11	Support the Use of Customer Self-Service Equipment in Terminal Design
85	61	EM-20	Periodically Recommission HVAC Systems and Control Systems
86	61	OM-03	Use a Computerized Maintenance Management System (CMMS)
87	61	RE-07	Install a Geothermal Snow and Ice Melting System
88	61	EM-36	Optimize Passenger and Baggage Handling System
89	61	GT-07	Implement "On-foot" Payment for Parking
90	61	GT-08	Implement a Traffic Management System
91	58	RE-08	Use Seawater and Natural Water Bodies for Cooling
92	58	PM-02	Perform Energy Audits
93	58	GT-04	Provide Transit Fare Discounts and/or Alternative Mode Subsidies
94	58	GT-09	Allow Telecommuting for Employees
95	58	RE-04	Use Solar Desiccant Air Conditioning Systems
96	58	EM-26	Install Energy Efficient Chillers
97	58	OM-02	Develop a Measurement and Verification Plan
98	58	AF-16	Support Push Back Tugs to Transport Planes to Taxiways, Runway Ends and/or Take-off Areas

Priority	Numerical Score*	Greenhouse Gas Reduction Strategy Name and Number				
99	58	AF-07	Provide Fixed Gate Infrastructure for Aircraft Underground			
			Supply and Evacuation Systems			
100	53	AF-15	Support Alternative Passenger Boarding Procedures			
101	53	BP-04	Develop Climate Change and Energy Communication			
			Materials and/or Information Center			
102	53	BP-09	Participate in a Greenhouse Gas Registry and/or			
			Accreditation Program			
103	53	AF-05	Consider Longer Runways to Reduce the Use of Reverse			
			Thrust			
104	53	AF-01	Provide Infrastructure for Pre-Conditioned Air (PCA) and			
			Ground Power			
105	53	PM-05	Work with Airport Industry to Develop Benchmarking			
			Databases			
106	53	ME-03	Start or Enhance a Green Procurement Program (GPP)			
107	53	GT-12	Construct a Personal Rapid Transit (PRT) System			
108	53	RE-06	Install Ground-Source or Geothermal Heating and Cooling			
			System			
109	50	PM-04	Track Energy Use			
110	50	EM-04	Enter into a Green Power Purchasing Agreement			
111	47	AF-13	Support the Development of Alternative Fuels for Aircraft			
112	47	GT-05	Increase Mass Transit Access to the Airport			
113	47	EM-05	Evaluate "Take or Pay" Contract Provisions			
114	47	GT-11	Build a Consolidated Rent-A-Car Facility (ConRAC)			
115	47	AF-06	Install or Expand Hydrant Fueling System			
116	47	AF-10	Install a Jet Fuel Pipeline			
117	47	RE-10	Install a Waste-to-Energy System			
118	44	BP-07	Offer Voluntary Carbon Offsets for Passengers			
119	44	PM-03	Install Tenant Energy Sub-Metering Systems			
120	44	EM-34	Use Methane from Anaerobic Bioreactor Treatment Systems			
			for Deicing Fluids			
121	42	CS-02	Add Mineral Carbonation Systems to Exhaust Streams			
122	42	RE-11	Install a Tidal Energy System			
123	31	EM-33	Construct a Cogeneration or Trigeneration Energy System			
124	28	CS-03	Implement or Support Carbon Dioxide Capture and Storage			
			Processes			
125	28	RE-05	Use On-site Biomass Energy Systems			

* Numerical scores are normalized to be within 0 and 100 and consider all evaluation criteria to be weighted equally. Higher scores indicate more desirable strategies.

Appendix B: Interviews with MIT faculty

John Hansman	Aircraft				
T. Wilson Professor of Aeronautics &	He explained the difference between GPU and APU. Pointed out that to reduce emissions, the use of APU must be minimized.				
Astronautics, Director of MIT International Center	He proposed the following practices:				
for Air Transportation	 Minimize the airplane in queue (He suggested us to refer to Prof. Balakrishnan's work) Towing the airplane to the runway to avoid using the Airplane's engines Electric motors on the wheels (evaluate if adding extraweight is beneficial) Single engine-taxing, only turn on the second engine five minutes before taking-off Measure how the airplane is warmed, in the first flight 				
	Ground operations				
	Change to electric vehicles because usually these vehicles are not moving and are parked close to the charging point.				
Leon R. Glicksman	Building efficiencies				
Professor of Building	He recommended us to verify or ask the following:				
Mechanical Engineering and Head of Building Technology Program in Mechanical Engineering and Architecture Department	 How is the building control system? Where are the places to turn-off the lights during the day? Does the airport allow open ventilation during the night in Summer? How the ventilation is controlled? Does the airport use recirculation of the air? (It is cheaper to have recirculated air than bringing fresh air.) About Displacement ventilation, is there a low velocity distribution at the bottom to avoid cooling a lot of air because of the high ceilings? About insulation. Evaluate for faults in the HVAC (A startup from MIT called KGS Building sets up sensors to evaluate where the HVAC is failing and improve maintenance) Check for shading in the windows, the orientation of the shades Is the lighting still fluorescent? Check the efficiency of the Kitchens Evaluate the possibility to change electricity generation to: Solar panels Wind, evaluate restrictions on the height of the building 				
Nathan Collin Brown	He suggested us to check the State Technical Resource Manual to:				
expertise in the design of	- Find documents with the metrics that they use for building				
energy efficient airport	efficiencies, indication of ranges of payback times.				

buildings (Introduced by Professor John Ochsendorf)	 Insulating mechanical equipment and pipes Evaluate overcapacity in conveyor belts to move baggage to check whether they operate in full capacity?
Hamsa Balakrishnan Associate Professor of Aeronautics and Astronautics	She provided different research papers on strategies to reduce emissions on airports. She explained about past attempts to reduce fuel consumption for taxi operations.
	And she also suggested to look at what has been done om similar airports, for example LAX.
John Sterman Jay W. Forrester Professor of Management. Director, MIT System Dynamics Group	As our project advisor, he provided insights on building efficiencies and challenges regarding carbon emissions reductions.

Appendix C: CO2 Emission Estimates

		TAXI IN / OUT*							
	Number of flights [flights/day]	JFK Lo 164 20% Source: http://med	JFK Hi JFK Ave Jetblue Ave 225 180 825 27% 22% nediaroom.jetblue.com/~/media/Files/J/Jetblue-IR/fact-sheet-documents/jetblue-focu:						
Operation Size & Time of Engine	Flights In Flights Out	180 180	Assumption: Average operation size is 80% of the maximum operation Assumption: Same number of departures and arrivals						
Working	Taxi in average time [min] Taxi out average time [min] Total time taxi in/out [hr/day]	10 15 75	Assumption: In line with	۱ http://www.rita.dot.gov/bt	s/sites/rita.dot.gov.bts/files/publicati				
Emissions	Emissions per time in ground [kg CO2e / day] Emissions per time in ground [Mton CO2e / yr] JetBlue emissions [Metric tons / yr] % of Jetblue Emissions	219,495 60,087 6,903,710 0.9%							
Key Assumption	% Single Engine Taxi	50%	This number change	es the total amount of e	missions. I.e . A 100% of use of				
Composition of fleet	Fleet A-320 A-321 E-190 Total http://www.airfleets.net/flottecie/JetBlue%20Airways.htm	# 130 28 60 218	% TA 60% 13% 28%	A time 35 Assumption: Jetf 40 Assumption: Jetf 30 Assumption: Jetf 34.3 Assumption: the	Blue's standard times (TBC) Blue's standard times (TBC) Blue's standard times (TBC) fleet flying from/to JFK is in the same				
Conversion from time of engine on to gallons of jet fuel	A-320 A-321 E-190	Fuel Burn Index 0.125 0.13 0.125	Engines Kg/da 2 2 2	ay 2-engir Kg/day single 40,252 20,126.15 9,017 4,508.26 18,578 9,288.99 67,847 33,923	€Gallon/day 2-€Gallon/day sin 13,225.78 6,613 2,962.58 1,481 6,104.21 3,052 22,293 11,146 €103290 Gallon/yr				
	EMISSIONS FACT	ORS			0102390 Gallolly y				
	Jet fuel (Jet A or	A-1)			Emissions Equivalent				
Conversion		Factor	Units GHG p	potential	Emissions/day 2-engine taxi				
from gallons	CO2	9.75	kg/gallon fuel	1	217,353 kg CO2e / day				
to Ton CO2e	CH4 N2O	0.00 0.31	g/gallon fuel g/gallon fuel	21 310	- kg CO2e / day 2,142.32 kg CO2e / day 219,495 kg CO2e / day				
	Comparison of fuel burn index								
	0.35 0.35 1 CAO estimate (Dec 2010) 2 0.25	•							
Time to kg of fuel factors									
	- A319 A320 A321 A330-202 A330-243A340-500 AR Aircraft type ICAO fuel burn rates 7%	taxi							

30% approach 85% climb-out 100% take off

				APU USAG	GE				
				IEKIA	10	кні	IEK Ave	lethlue	
	Operation Size [flights/c	lavl		JFK L0 164	JI	·к пі 225	180	825	
	operation size (mgnts) e	.uy]		20%		27%	22%	025	
				http://mediar	oom.jetblue.	com/~/m	edia/Files/J/Jetblue	e-IR/fact-sheet-d	ocuments/jetblue-focus-cities.pdf
Operation				100					
Size & Time	Flights In Elights Out			180	Assum	iption: Av	erage operation siz	e is 80% of the n	naximum operation
of Engine	Tights Out			100	Assun	iption. 3a	me number of depa	intures and arrive	als
working	Taxi in average time [mi	n]		10	Assum	ption: In	line with http://ww	/w.rita.dot.gov/b	ots/sites/rita.dot.gov.bts/files/publica
	Taxi out average time [r	nin]		15					
	Turn around time [min]			34.3					
	Total APU time [hr/day]			51.4					
	Emissions per time in gr	ound [kg CO2e ,	/ day]	17,7	'37				
Emissions	Emissions per time in g	round [Mton CC	02e / yr]	6,4	174				
	JetBlue emissions [Metr	ic tons / yr]		6,903,7	10				
	% of Jetblue Emissions			0	.1%				
Кеу	0/ ODI I			5.00/					
Assumption	% GPU usage			50%	This i	number	is an assumptio	n of what per	centage of the TAT the APU is
	Fleet			#		%	TA time		
Composition	A-320			130	6	50%	35	Assumption: Je	tBlue's standard times (TBC)
of fleet	A-321 F-190			28	-	L3% 28%	40 30	Assumption: Je	tBlue's standard times (TBC)
	Total			218	-	2070	34.3	Assumption: th	e fleet flying from/to JFK is in the sam
	http://www.airfleets.net/flot	tecie/JetBlue%20Ai	rways.htm						
	First house first and 45 mile			00					
Conversion	Fuel burn [kg per 45 mir	hrl		80 107					
from kg of	Density Jet A-1			0.804	kg/l				
fuel burnt to	Litre to Gallon			0.264172	2 l/gall	on			
gallons	Fuel burn [Gallon Jet Fu	el / hr]		35					
	EMISSIONS FACTORS								
C	Jet fuel (Jet A or A-1)							Emissions Ec	quivalent
from gallons				Factor	ι	Jnits	GHG potential	APU Emissio	ins
of jet fuel to	CO2			9.75	kg/ga	llon fuel	1	341.7	kg CO2e / hr
CO2e	CH4			0	g/gal	lon fuel	21	0.0	kg CO2e / hr
	NZO			0.51	g/gai	lon luei	510	345.1	kg CO2e / hr
						1			0
		Chilled Wate	r]			
Bill readings		0 MBTU/ma	lune						
Bill	68353	6 \$/mo	Julie						
Rate	112.	3 \$/MBTU							
Consumption	n [MBTU/yr] 7306 [top-br/yr] 608	8 9							
ton-hour refr	igeration 1	2 MBTU							
	5					_			
			Factor	kg CO2e/yr to	n CO2e/yr				
Emissions CO	0.884	kg/ton-hour	1	5382.676	5.38				
Emissions NC	0.083	g/ton-hour	310	3.77518	0.01				
Total		5/ 1011 11041	510	5177510	5.40				
Energy Steam	Product or Hot Water	Carbon Dioxide	Methane	Nitrous Oxide					
Units Value	of Measure	kg/MMBtu 88.18	g/MMBtu 8.169	g/MMBtu 0.603					
Chilled Units of	Water of Measure	kg/ton-hours	g/ton-hours	g/ton-hours					
Absor	ption Chiller Using Natural Gas ^b	0.884	cooling 0.083	cooling 0.002					
Engine	e-onven Onnier Using Natural Gas c-Driven Chiller®	- 0.590	0.056	0.001					
Unit	omestic	cooling	cooling	cooling					
	1999-2002° 1991-1994°	0.629 0.639	0.017 0.019	0.010 0.011					
"Weighte	d average based on Energy Information Ad	See Note 2 below ministration's (EIA) 1998 M	See Note 2 below anufacturers Energy Co	See Note 2 below					
the quant these inst respective	trues of natural gas, coal, and residual and o tructions, and EIA/OIAF efficiency assumpti ely. Factors also assume 10 percent losses	ons of 80, 81, and 82 perce during transmission.	as boiler fuel, emission ent for natural gas, coal a	ractors from Appendix H of and petroleum boilers,					
^b Chilled v assume 1 ° Lice 190	water efficiencies based on California Clima 0 percent losses during transmission. 19-2002 factors to calculate emissions and	te Action Registry, General	Reporting Protocol (Oct	ober 2002). Factors also	,				
2003 or la Reporting	ater. Use 1991-1994 factors to calculate em Year reports for 1991 through 2002. Facto	issions and reductions for rs also assume 10 percent	Start Year reports for 199 losses during transmiss	90 through 2001 and ion.					

Mid Temperature Water							
Bill Readings							
Consumption		8000 MBTU/mo	Source: Interview with				
Bill	N/I	\$/mo					
Rate	N/I	\$/MBTU					
Consumption	9	6000 MBTU/yr					
r							

		Factor	k	g CO2/yr	ton CO2/yr
Emissions CO2	88.18 kg/MBTU		1	8465280	8465.28
Emissions CH4	8.169 g/MBTU		21	16468.7	16.5
Emissions NO	0.603 g/MBTU		310	17945.3	17.9
Total					8499.7

Electricity

Site: JFK Terminal 5 (Location: JFK - eGRID subregion: NYLI)							
		Regio					
Year	ergy use (kWh	CO2	N2O	CH4			
2014	29,401,440	1.33611	0.00008149	0.00001028			
		CO2	N2O	CH4	Total		
		39,283,558	2,396	302	39,286,256		
		CO2	N2O	CH4	Total		
		39,283,558	742,736.24	6,347	40,032,641		

Source: JetBlue 2015 GHG Emissions excel file

Emissions [lb CO2e/yr]	40,032,641
Emissions [Metric ton CO2e/yr]	18,197
Conversion	
lb/kg	2.2

Appendix D: Photos of findings during Site Visit

Appendix E: GSE cost-benefit analysis

a. Ballpark GSE purchase costs (28)

Туре	Fuel Type	Costs
Ground Power Unit	Diesel	\$17,000
Baggage Tractor	Gasoline	\$26,000
	Diesel	\$28,000
	Electric	\$35,500
Belt Loader	Gasoline	\$28,500
	Diesel	\$32,200
	Electric	\$38,800
Pushback Tug	Diesel	\$86,200
	Electric	\$93,000
Cargo Loader	Diesel	\$475,000

b. Assumptions for the analysis

Percentage of fuel consumed by bag	
tug, belt loader and pushback	70%
Operational & Maintenance cost	
savings (\$)	\$2,000.00
% Salvage Cost	6%
Electricity consumed by GSE (KWH	
per gallon)	12
Discount rate	15%
Average useful life	13

California Department of Transportation (Caltrans), 1998

JetBlue U.S. Department of Transportation FAA, 2010

			_
	# vehicles	Purchase Price per vehicle	
Bag Tug - Gasoline	77	\$26,000.00	ACRP 078
Belt Loader - Gasoline	59	\$28,500.00	
Bag Tug - Diesel	5	\$28,000.00	
Belt Loader - Diesel	5	\$32,200.00	
Push Back - Diesel	38	\$86,200.00	

Total Vehicles Gasoline	136	
Total Vehicles Diesel	48	
CO2 emissions coefficient (kg CO2		U.S. Energy Information Administration
per gallon) - Gasoline	8.89	estimates
CO2 emissions coefficient (kg CO2		U.S. Energy Information Administration
per gallon) - Diesel	10.16	estimates
		US EPA
CO2 Intensity Factor JFK (kg		(http://www.epa.gov/cleanenergy/energ
CO2/KWh)	0.51	y-resources/egrid/)
Electricity price (\$/kwh)	\$0.10	JetBlue
Gasoline price ((\$/gallon)	\$3.11	JetBlue
Diesel price (\$/gallon)	\$3.29	JetBlue

c. Vehicle purchasing plan

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Bag tug - Diesel	0	5	0	0	0	0	0	0	0	0	0	0	0
Belt loader - Diesel	5	0	0	0	0	0	0	0	0	0	0	0	0
Push back - Diesel	0	38	0	0	0	0	0	0	0	0	0	0	0
Bag tug - Gasoline	0	77	0	0	0	0	0	0	0	0	0	0	0
Belt loader - Gasoline	0	59	0	0	0	0	0	0	0	0	0	0	0

d. Estimations of NPV

JetBlue GSE Replacement Pro Forma

NPV of all cash flows	Present value of cash flows by year	Cash flows by year	Changes in working capital	Working capital	Capex	Net Income	Taxes	Interest	EBIT	Depreciation	EBITDA	Total	Operational & Maintenance Cost Savings	Fuel Savings	Operating Costs Extra Electricity Cost	Total	Old Equipment sold	Revenue	
\$ 1:	Ş	Ş	Ś	Ŷ	Ŷ	Ŷ	Ŷ		Ŷ		Ş	Ŷ				Ŷ		20	
34,810	•	•		i.	i.		•		•		,)16	0
	۰ ۰	\$;	ŝ	ŝ	\$	ŝ	Ŷ		Ŷ	ŝ	Ş	ŝ	ŝ	Ϋ́	Ś	ŝ	ŝ		
	110,128	126,648		i.	194,000	28,552	15,374		43,927	38,800	82,727	50,527	10,000	63,796	23,269	32,200	32,200	2017	1
	-\$3,976,742	-\$5,259,241	ۍ ۲	ۍ ۲	\$7,471,400	\$ 679,079	\$ 365,658		\$1,044,737	\$1,533,080	\$2,577,817	-\$1,157,997	-\$ 368,000	-\$1,265,278	\$ 475,281	\$1,419,820	\$1,419,820	2018	2
	\$ 849,293	\$1,291,668	\$ -	ۍ ۱	ۍ ۲	-\$ 241,412	-\$ 129,991		-\$ 371,403	\$1,533,080	\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	ۍ ۲		2019	з
	\$738,515	\$1,291,668	\$ -	ۍ ۱	Ş.	-\$ 241,412	-\$ 129,991		-\$ 371,403	\$1,533,080	\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	\$ -		2020	4
	ş	\$1,2	ŝ	Ś	ŝ	-\$ 2	-\$ 1		ς. Ω	\$1,5	\$1,1	-\$1,1	ς. ω	-\$1,2	\$ 4	ŝ		2	
	42,187	91,668		i.	i.	41,412	29,991		71,403	33,080	61,677	61,677	71,680	65,278	75,281			021	л
	\$ 552,553	\$1,278,088	\$ '	ۍ ۱	ۍ ۲	-\$ 216,192	-\$ 116,411		-\$ 332,603	\$1,494,280	\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	ۍ ۲		2022	6
	\$ 283,866	\$ 755,090	\$ -	ۍ ۱	ې ۲	\$ 755,090	\$ 406,587		\$1,161,677		\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	\$ '		2023	7
	\$ 246,840	\$ 755,090	\$ -	ې ۲	÷	\$ 755,090	\$ 406,587		\$1,161,677		\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	ۍ ۲		2024	80
	\$ 214,644	\$ 755,090	\$	ې ۲	ۍ ۲	\$ 755,090	\$ 406,587		\$1,161,677		\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	ۍ ۲		2025	9
	\$ 186,64	\$ 755,090	ۍ ۲	ۍ ۱	ۍ ۲	\$ 755,090	\$ 406,58		\$1,161,67		\$1,161,67	-\$1,161,67	-\$ 371,68(-\$1,265,278	\$ 475,28:	\$ -		2026	10
	\$	\$ C	ŝ	Ś	ŝ	ş	\$		7 \$1,		7 \$1,	7 -\$1,	\$÷	3 -\$1,	\$	ŝ			
	162,301	755,090			i.	755,090	406,587		161,677		,161,677	,161,677	371,680	,265,278	475,281			2027	11
	\$ 141,132	\$ 755,090	\$ '	\$ '	ۍ ۲	\$ 755,090	\$ 406,587		\$1,161,677		\$1,161,677	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	ۍ ۲		2028	12
	\$ 203,703	\$1,253,341	\$ -	ې ۲	ۍ ۲	\$1,253,341	\$ 674,876		\$1,928,217		\$1,928,217	-\$1,161,677	-\$ 371,680	-\$1,265,278	\$ 475,281	\$ 766,540	\$ 766,540	2029	13

Tax

0.35 0.15

-