Assessing Global Airfields: Infrastructural Viability for Military Operations

MBAn Students: Christian Ingersoll and Devin Wasilefsky

Faculty Advisor: Mr. Jordan Levine

Lincoln Laboratory Advisors: Dr. Brian Bassham, Dr. Allison Chang, Mr. Stephen DePascale

PROBLEM STATEMENT

Context

To prepare for the future fight, the Air Force has prioritized implementation of the **ACE concept** What is ACE?

Agile
Combat
Employment

A **proactive** and **reactive** operational scheme of maneuver executed within threat timelines to increase survivability while generating combat power.

An important aspect of ACE involves conducting operations **outside of established airbases.** Using public data for **preliminary airfield assessments** will allow us to expand operations to more airfields, as well as **save** the **time** and **resources** needed for successful ACE operations.

How can we efficiently tell an airfield we've never used before is viable for military operations?

Data

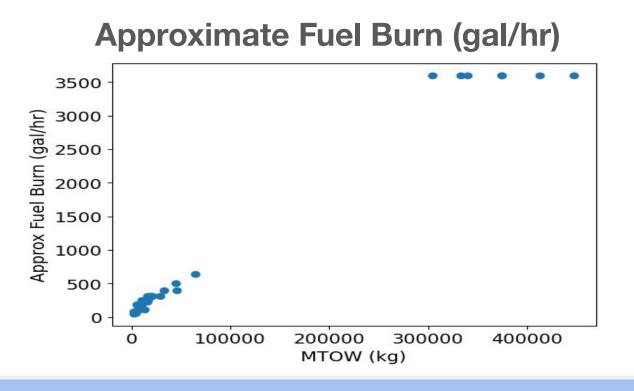
No centralized, publicly available database regarding global airport infrastructure

Through **combination** of several **publicly available** sources, we accumulated a database of **Flight Traffic Records** and **Aircraft Characteristics**

t	Flight Traffic Data (BTS)	=	ORIGIN ORD	DEST JAX	AIRCRAFT Boeing 777	AIR TIME 120 min	PAYLOAD 2000 lbs
	Aircraft Characteristics		AIRCRAFT	DIMENSIONS	MAX TAKEOFF WEIGHT (MTOW)	CRUISE SPEED	APPROX. FUEL BURN RATE
	(Skybrary)		Boeing 777	73x65x19 ft	545,000 kg	590 kts	8.5 gal/hr

Workflow

With the following assumptions, we can use our available data to preliminarily assess airport infrastructure:


- 1. Airfields with many fuel-intensive flights typically have larger fuel storage capacities
- 2. Airfields that <u>can land large</u>
 <u>aircraft</u> can <u>handle similar or</u>
 <u>smaller</u> ones

Calculate Fuel Base Air Traffic Consumption Data **Per Airport** Compiling Merged **Additional Data** Traffic/Aircraft **Visualize** Sources Data **List Landable** Base Aircraft Complete **Military Aircraft** Data w/ Null **Aircraft Data** (via clustering) Values **Data Imputation** Methods

1. Data Manipulation

Aircraft attributes (e.g. body type, aircraft dimensions) were imputed through various means such as **KNN imputation**

In order to ensure accurate fuel burn estimations, we used a **splines model** due to the piecewise nature of fuel burn

2. Fuel Estimation

We can use fuel consumption estimates as a proxy for fuel storage capacity:

Complex Estimation

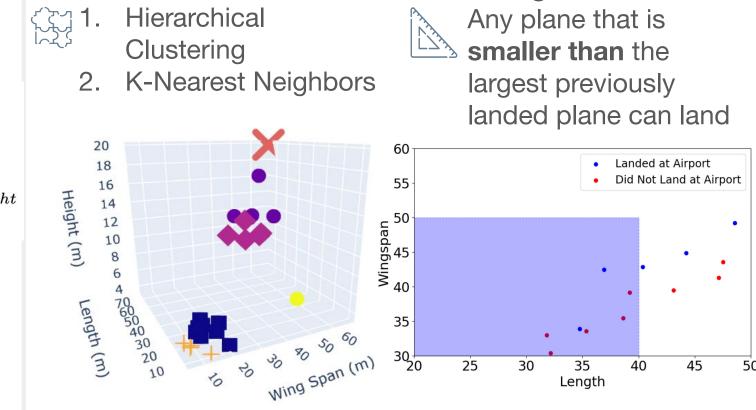
More accurate, requires more granular data

 $\mathbf{Base\ fuel\ burned}_{Flight} = \mathbf{Aircraft\ Burn\ Rate\ *\ Distance}$ $\mathbf{Payload\ burn}_{Flight} = \mathbf{Distance\ *\ Payload\ *\ Payload\ Multiplier}$ $\mathbf{Fuel\ Estimation} = \sum \ \mathbf{Base\ fuel\ burned}_{Flight} * \mathbf{Payload\ burn}_{Flight}$

 $\mathbf{Estimation} = \sum_{Flights} \mathbf{Base\ fuel\ burned}_{Flight} * \mathbf{Payload\ burn}_{Flight}$

Simple Estimation

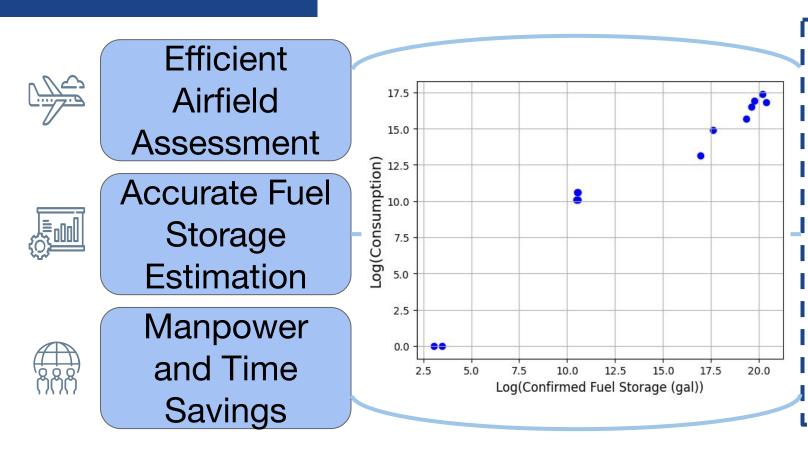
Less accurate, feasible with less granular data


 $ext{Fuel Estimation} = \sum_{Flights} ext{Cruise Speed} * ext{Distance} * ext{Aircraft Size}$

Compute simple estimation for all airfields and complex estimation for airfields where granular data exist

3. Aircraft Similarity

Knowing what planes have landed before allow us to predict what planes can land in the future


Clustering Bounding Box

With our current data, we recommend a **combination** of clustering and bounding box approach

USINESS IMPACT

Results

By harnessing available data and applying analytics, our process enables mission planners to efficiently assess 200% more airfields for a given mission

Example of Potential Use

Circles mark potential airfields for a specified mission. Circle size corresponds to fuel consumption. Hovering over circle shows airfield details including total fuel consumption and landable aircraft.