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Our Best Model: XGBoost Classifier Chain

Baseline: Random Guess

Target: 6 highly-engaged actions

Customer Level: All customers ~ 50m 

Quarter: 2025.05 (30d) & 2025.0506 (60d)
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Personalized Customer Engagement: Recommend 

the most relevant marketing action (e.g., app 

download, loyalty upgrade, or credit card signup) for 

each customer based on their journey and behavior.

Marketing Campaign Optimization: Predict which 

customers are most likely to respond to each type of 

campaign (email, SMS, app push) and allocate 

resources accordingly.

Customer Loyalty Tier Advancement: Identify which 

customers are likely to advance to higher loyalty tiers 

(Gold, Platinum) and what actions influence that 

upgrade.
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Macy’s Next Best Action initiative aims to recommend highly-engaged customer actions—such as credit signup, loyalty upgrade, or channel opt-

in—based on each user’s behavioral signals. Predicting what customers will do next enables smarter engagement and personalized growth.
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About Macy’s Inc Problem Statement

• USA’s most iconic department store

• Founded in 1858, 166 years history

• 519 stores in USA & online ecommerce

• Offers fashion, beauty, home essentials

• Annual revenue of $23B in 2024

Initiate Data-Driven Personalized Marketing Startegy 

Power personalized journeys by surfacing the most relevant next 

action for each customer

Use model predictions to filter customers eligible for credit card 

offers before running acquisition campaigns

Trigger timely omnichannel nudges (e.g., app download 

prompts) for users close to full-channel activation

Tailor message framing based on the predicted action (e.g., 

promote cross-category variety vs. loyalty benefits)
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Align targeting with actual journeys

Enable Data-Driven Personalization 

Drive higher-value engagement
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𝑪𝑳𝑽 𝑼𝒑𝒍𝒊𝒇𝒕 𝒇𝒐𝒓 𝑨𝒄𝒕𝒊𝒐𝒏𝒊 =  ∆𝑪𝑳𝑽𝒊

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝑻𝒂𝒌𝒊𝒏𝒈 𝑨𝒄𝒕𝒊𝒐𝒏𝒊 = 𝑷(𝑨𝒄𝒕𝒊𝒐𝒏𝒊)

𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑽𝒂𝒍𝒖𝒆 𝒐𝒇 𝑨𝒄𝒕𝒊𝒐𝒏𝒊 = 𝑷 𝑨𝒄𝒕𝒊𝒐𝒏𝒊 × ∆𝑪𝑳𝑽𝒊

Recommended Action:

𝑴𝑨𝑿(𝑷 𝑨𝒄𝒕𝒊𝒐𝒏𝒊 × ∆𝑪𝑳𝑽𝒊)
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