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Problem Statement ‘ Dataset

Given data from an engine's assembly, can we predict its quality test results and whether it will fail? Production data from Nissan's Tennessee facility for VCR engine for the

time period February 2022- March 2023. Contains over 11,000 engines
Test We're predicting 5 attributes from test:
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Aproach 1: Predicting Engine Failure Approach 2: Predicting Test Results

Engine Failure: If an engine was taken off the manufacturing line for an hour or more Test Results: Measures of engine quality recorded at testing--we focus on four
Baseline Model: Simplest trainable classifier can't detect bad engines Baseline Model: Simplest trainable classifier has relatively low model fit

Our Model. Modified logistic regression achieves far better detection rates Our Model. Gradient boosting achieves a breakthrough in predictive power
Technical specs: summary statistic training data, class weighting, LASSO regularization Technical specs: XGBoost with cross-validated max depth

Percent Decrease in Model Error From Baseline, Across Main Four Test Variables

Comparing Engine Failure Predictors using 4 Key Model Metrics
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Our models help our client detect faulty engines, potentially saving 400K engines annually Models for Models for Models for Models for
Test Variable D Test Variable B Test Variable A Test Variable C
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Future Work & Project Vision

We envision an integrated pipeline that provides more holistic value to Nissan
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Engines become Data Anomaly Testing Result
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Handoff:

Understanding how assembly data . . . . . . .
. Identify — 3. Measure, This research is ongoing, and we will deliver our code to MIT and Nissan as a foundation

affects test data allows Nissan to

reengineer their engine production and diagnose analyze, for future researchers to produce more value from.
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