Testing Without Testing

Predicting Engine Failure Using Virtual Quality Gates

Sponsor Organizations: Nissan Motor Co. Ltd., MIT MIMO, and MIT Device Realization Lab Faculty Advisors: Dr. Brian Anthony & Jim Butler PhD Mentors: Russel Bradley & Kimberly Carballo

Motivation

Nissan has faced recurrent engine issues:

2.1M

700K

Engines recalled in 2010 due to faulty control system

Rogue SUVs recalled in 2023 due to engine shut-off issues

Why Care?

Engine recalls are costly both to Nissan and drivers

Reduced Driver Safety

Faulty engines directly impact driving experience

Brand Reputation Damage

Quality concerns have killed car brands before

Monetary Impact

- Reduced production
- throughput - Increased maintenance

Dataset

Assembly Data

all engines produced

Individual operation level data for

- costs
- Increased retesting costs

MIT Machine Intelligence for Manufacturing & Operations (MIMO) deploys machine intelligence to manufacturing problems.

Production data from Nissan's Tennessee facility for VCR engine for the

Repair

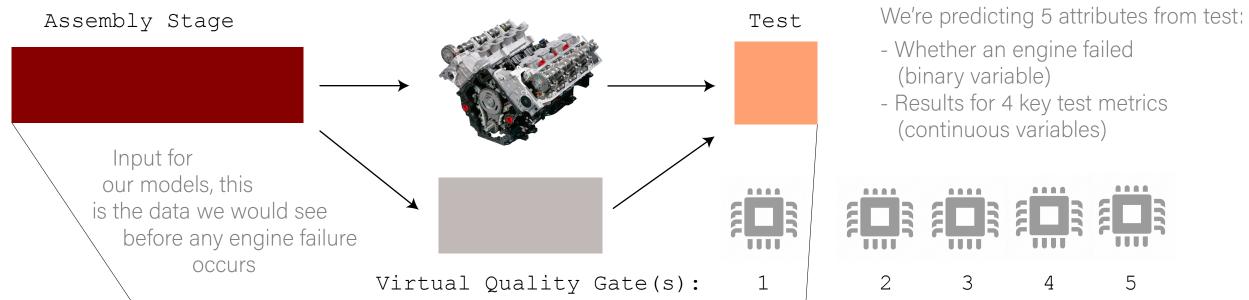
time period February 2022- March 2023. Contains over 11,000 engines

MIT's Device Realization Lab, directed by Dr. Brian Anthony, designs instruments and techniques to sense and control physical systems.

Nissan is a large Japan-based automobile manufacturer

Problem Statement

Given data from an engine's assembly, can we predict its quality test results and whether it will fail?



Test A

Test B

Repair

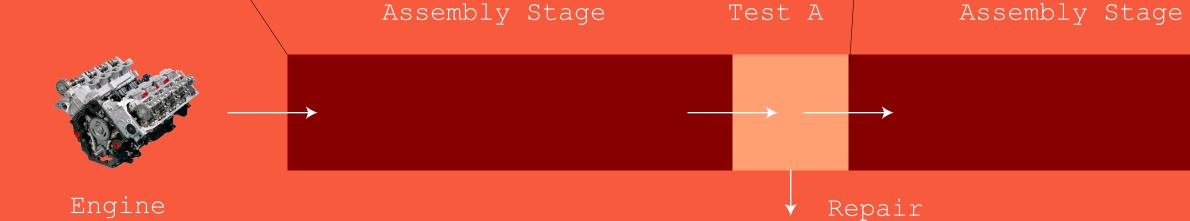
Assembly Stage

Test C Test D

Functional engine testing data from

Test Results Data

test processes A, B, C, D

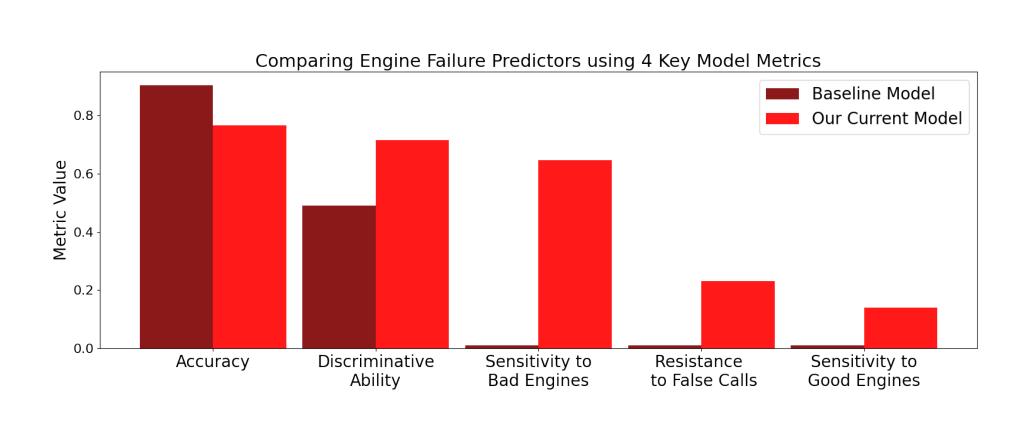


Aproach 1: Predicting Engine Failure

Engine Failure: If an engine was taken off the manufacturing line for an hour or more Baseline Model: Simplest trainable classifier can't detect bad engines

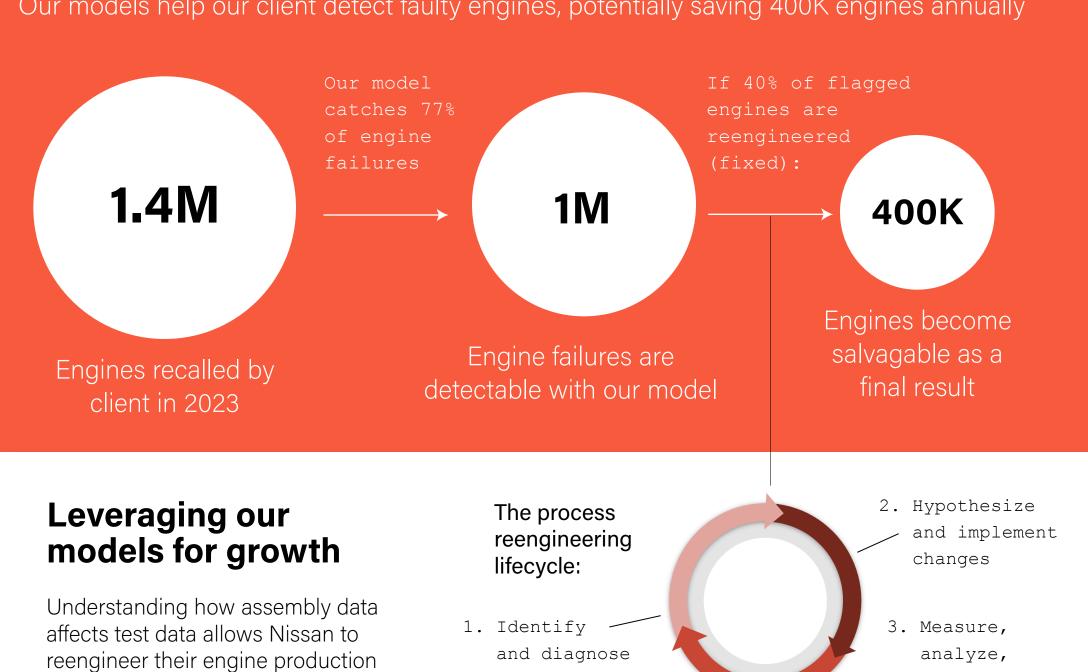
Our Model: Modified logistic regression achieves far better detection rates

Technical specs: summary statistic training data, class weighting, LASSO regularization



Business Impact

Our models help our client detect faulty engines, potentially saving 400K engines annually

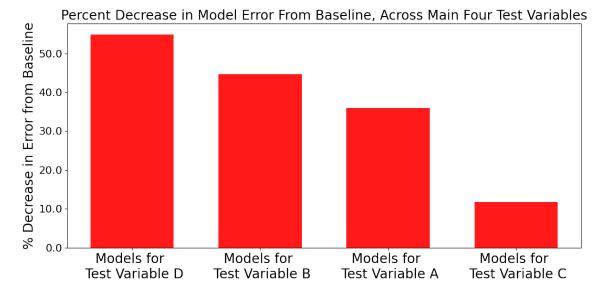


subprocesses

Approach 2: Predicting Test Results

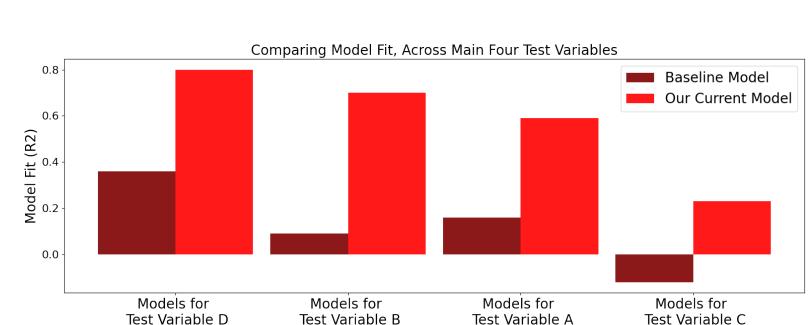
Test Results: Measures of engine quality recorded at testing--we focus on four Baseline Model: Simplest trainable classifier has relatively low model fit Our Model: Gradient boosting achieves a breakthrough in predictive power

Technical specs: XGBoost with cross-validated max depth



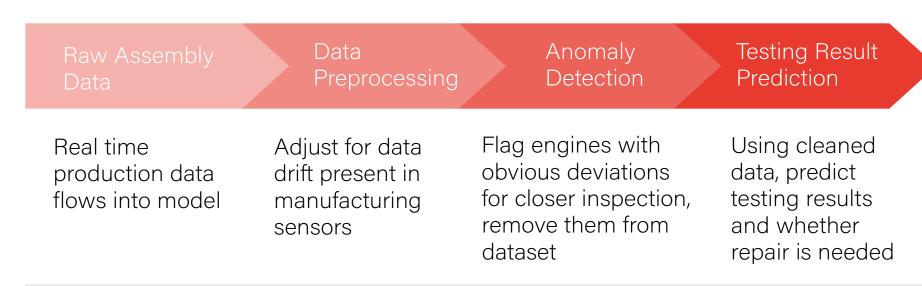
For Context: Previous modeling has be unable to beat the

baseline when predicting many of the test variables



Future Work & Project Vision

We envision an integrated pipeline that provides more holistic value to Nissan



Handoff:

and adapt

This research is ongoing, and we will deliver our code to MIT and Nissan as a foundation for future researchers to produce more value from.