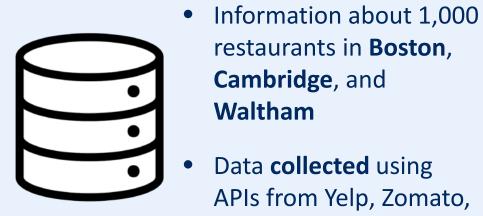
Introducing Ratatouille: a Generalizable Goal-Oriented Dialog Bot

M. Amram – J. Toledano Team Faculty N. G. des Mesnards – T. Zaman Company L. Gerdes – R. Sehgal – I. Pyzow

Problem Statement

Commercial solutions use **human** workforce to frame dialog with **rules**

Business analysts


- Formulate a base dialog flow for a given use case
- Handcraft a specific series of rules from base dialog flows

Rule-based dialog flow 5

- Bot leads conversation using preset questionbased flow
- Bot **classifies** user responses using its handcrafted rules

Data Integration & Architecture

Two enhanced sources fuel the restaurant recommendation task

Structured

Database

- Data **collected** using APIs from Yelp, Zomato, and OpenTable
 - Set of scripts automates data integration and cleaning

restaurants in Boston,

Cambridge, and

Waltham

Transcripts

• More than 3,000 open-source conversation transcripts published by University of Cambridge

Augmented with **new** features and automatically generated sentences by bespoke parsers

Our solution leverages deep learning to improve generalizability

Structured knowledge

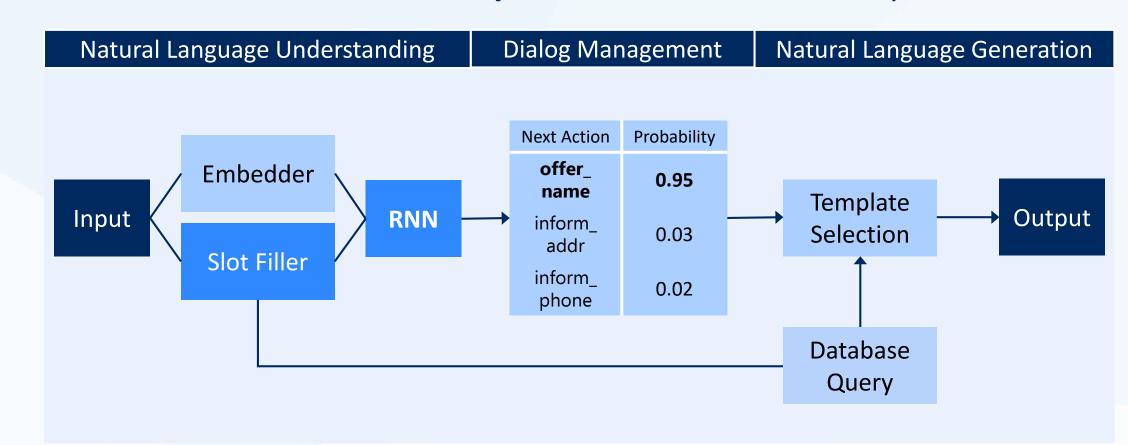
Database of structured information required to answer user requests

Extensive conversational data

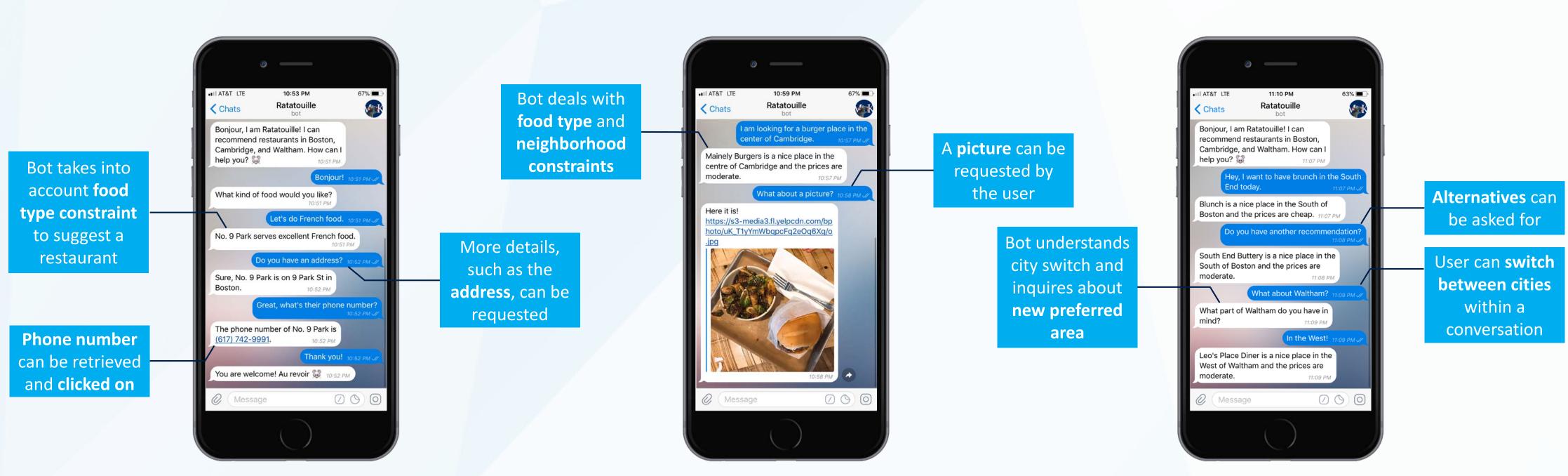
Thousands of labeled **conversation** transcripts required to use deep learning

Deep architecture

 Deep learning algorithms infer patterns from textual data to frame any dialog


Generalizable model

Switching database


Can be **extended** by:

- Incorporating new features by generating new conversations
- Curating transcripts for any business use case

Our end-to-end architecture predicts the bot's next response

Demonstration Application

Project Timeline

On-campus research				On-site internship		
February	March	April	May	June	July	August
General literature	End-to-end	Building	Implementing	Release of Alpha	Example level	Feature level
review	architectures	Informative DB	Bot modules	version	generalizability	generalizability

Impact

Customer acquisition Cost reduction Churn reduction • Display advanced Automate repetitive tasks Act on customer Allow exceptional people capabilities to preferences Automate customer to **focus** on high-value prospective customers Meet customer **satisfaction** analysis problem solving **Vertical** Scale up and down Answer questions with expectations • Adapt rapidly to new high accuracy 24/7 depending on customer requirements customer use cases • User-friendly solutions • Brands use bots to retain Large-scale implementations have a bring about massive tech-savvy customers proven track record for adoption generating value **Examples**

Path Forward

New Use Case • Formulate the business use case as **recommendation task**

Methodology to apply the architecture to a new business use case:

- Gather and **curate** thousands of conversation transcripts
- Build the corresponding informative database by scraping the web
- **Train** the core deep learning modules

Algorithm

Promising research-stage architectural developments:

- Memory Networks: RNN that selects and stores relevant dialog chunks in memory
- Frames Tracking: adding a memory module to rewind the dialog
- Reinforcement Learning: takes into account the future turns of the conversation to optimize the local dialog state

Infrastructure

From a prototype to production-ready solution:

- Training the core RNN with **GPU** reduces training time from 7 hours to 30 minutes
 - Cloud hosting allows the bot to communicate with several users simultaneously to improve scalability