How to turn an hour-long meeting into 5 minutes?

McKinsey & Company

Team: Imane Farhat & Nassim Helou Faculty advisor: Prof. Colin Fogarty Company: Ekta Srivastava & Suzana Iacob

KnowNow Platform

KnowNow is McKinsey & Company's internal multimedia platform that hosts and shares knowledge videos between collaborators, including recordings of Zoom meetings

Video content is currently on the rise, and there is a strong demand for short synthesized highlights of knowledge videos on KnowNow

~5400 videos currently on KnowNow Over **70%** increase in views from 2020 to 2021 Over 67% of the firm visited the platform in 2020

Problem statement

Collaborators at McKinsey & Company rarely have the time to consume an hour long video to extract the key knowledge

Manual video summaries are created, but these are very time consuming to make and are available for very few videos

Solution: Create a video summarization tool for KnowNow videos

Value proposition

~10 mins are spent to summarize key points of a meeting. A consultant holds about 5 meetings in a day. Saves ~4 hrs/week/consultant

~1.5 hours to watch and create video synthesis for curators. Approximately 10 meetings/month have curated summaries. Saves ~15 hrs/month

Project timeline

February - March

Scope definition of the project Literature research on video summarization techniques

Experiment design Implementation of unsupervised video summarization model on

April

standard datasets from research paper

Preprocessing pipeline design including cleaning and punctuation of transcripts Implementation of transcript summary models using BERT and PageRank

May

Evaluation of summary models on KnowNow transcripts Segmentation of transcripts using video key scenes and speakers

lune

Keyframe classification Integration of all models in final ouput

July - August

Evaluation on KnowNow videos

Solution proposition

The objective of this project is to solve this problem by developing capabilities to:

1. Auto-generate synthesized videos

Using **state of the art research** to generate static or dynamic video summaries using supervised or unsupervised approaches. The output of these models is a shorter video that

contains the key sequences or key frames

2. Text summaries and key highlights from the video

Using video transcripts and metadata to capture the key highlights of the video using the following scheme:

- Cleaning and summarizing the transcripts
- Selecting the most relevant frames of the video to accompany the text summary. Since the videos are essentially Zoom recordings, the most relevant frames should be **slides extracted** from the meeting in the video

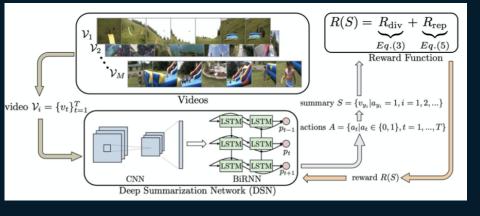
Datasets

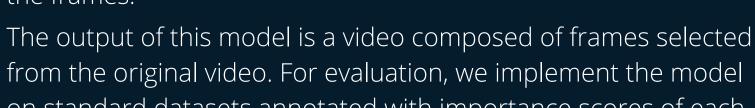
Curated KnowNow videos in mp4 format The videos used are mostly **long-format Zoom recordings** of meetings (prioritized videos)

Transcripts of videos generated using existing Speech to Text algorithm in KnowNow

Metadata of videos (speakers in the video) Selection of most important keyframes of the video generated using a vendor product by Microsoft (Azure Video Indexer)

Experiment 1


of the video.



After reviewing the literature of this state of the art field, we implemented an approach based on Reinforcement Learning and CNNs for unsupervised video summarization.

The Summarization Network selects frames from the original video using a reward function based on diversity and representativeness of the frames.

on standard datasets annotated with importance scores of each frame. The evaluation metric used is the F-1 score between the frames selected by the model and those selected based on their importance scores.

We achieved 60% F-1 scores on these datasets, which is the target score reached by the authors of the implemented paper.

Experiment 2

Building a pipeline to preprocess video **transcripts** generated by Speech to Text algorithms.

The punctuation algorithm implements a punctuation generating paper using **Bidirectional Recurrent Neural Network** with Attention Mechanisms.

Implementing extractive text summaries using BERT and PageRank which are two Google pretrained neural network algorithms.

Implementing abstractive text summaries using the **BART** model to improve summary quality.

Experiment 3

The video metadata provides insights on:

- The **main speakers** in the video
- The **key scenes** of the video

We use these insights to segment the video and transcript and summarize each segment separately, assuming that when a speaker or scene changes, the ideas discussed change as well.

The key frame extraction returns frames of slides and frames of random snapshots of the video. For knowledge Zoom recordings, we assume that the most relevant frames are snapshots of slides. Therefore we implement a classification model to detect whether a frame is a slide or not.

Feature engineering of the frames to extract **color** indicators and detection of the presence of text in the frame. Both are very strong predictors.

Implementation of Random Forest model for frame classification, resulting in **95% accuracy.**

Results

The output of Experiment 1 is a summarized video: it's a **shorter** video containing the main frames of the original video.

Many people enjoy watching a synthetized video more than reading text, the dynamic element making it easier to remember.

The combination of the **transcript summary from Experiment 2** and the **selected frames** corresponding to the most relevant slides of the video from **Experiment 3** results in creating an **articlelike summary** that captures the key highlights of the video.

Impact

15 hours per month saved per content curator Well-curated and easily consumable knowledge

Conclusion and Future Directions

Conclusion

- We have laid the foundation for a video summarization model.
- Our transcript preprocessing pipeline can be generalized and used for any KnowNow transcript.
- Our methodologies can be easily modified to incorporate different models and allow for flexibility and experimentation with the output.

Future steps

- Finish building a preprocessing network (GoogleNet or ResNet) to train the model in Experiment 1 on Know Now videos as well.
- Build infrasctructure needed for data and model hosting in a UI.