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Problem Statement

About Oxfam

Oxfam International is an organization that fights inequality to end poverty and injustice.
Supporters, or constituents, of Oxfam fall into different categories, primarily characterized
by their giving and action history. |
| | Donor Sub-Categories
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Oxfam’s constituents are essential to delivering on their mission, making it critical to reach and
engage as many of them as possible. Current marketing strategies are not fully data-informed.

Our goal is to improve the efficacy of constituent outreach by leveraging
data to enable targeted marketing efforts through
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Data Methodology

Constituent Clustering
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Exploratory Data Analysis
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Goal: Cluster constituents by demographics to find natural groupings within the supporter base
For each constituent category and across all constituents (Advocates category shown as example):

middle_partisanship (0.235596)
pp2020_rep (0.178982)
emp_medical (0.159299)
donor_charity (0.141543)
business_owner (0.138651)
emp_pilot_commercial (0.036924)
likely_dem (0.033099)
reg_or_primary_rep_ever (0.025948)
registered_right_fringe (0.023678)
donor_political_any (0.015214)

needed to understand constituent groupings dimensions

(retaining 80% variance)
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Components

Supporter Prediction Models

Goal: Predict a constituents behavior given only demographic data

for meaningful segmentation
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End Products Impact
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Demographic Analysis Tables

Demographic
Analysis Tables

Target Tool

Files containing the supporter
An automatically generated predictions from the built
script that provides a current models along with several
demographic summary of demographic features for
Oxfam’s supporter base filtering purposes
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Future Work
* RunA/BTestto assess impact
* Deployand scale Target Tool for future outreach
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