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Abstract 

We provide evidence that accounting experimental studies are prone to p-hacking. Extracting p-values 

from experimental accounting studies published on the three top accounting journals from 1990 to 

2016, we find an unusual abundance of p-values that are just significant: the frequency of p-values 

equal to 0.05 far exceeds what would be expected based on the frequency of neighboring p-values. The 

discontinuity at 0.05 is more pronounced for articles written by untenured authors, male authors, sole 

author, and authors from higher-ranking schools. We also document a positive association between the 

extent of p-hacking and future citations. In contrast, we do not find a similar discontinuity from archival 

accounting articles. Lastly, we suggest several potential solutions to guard against p-hacking in 

experimental accounting studies. 
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“Given the competition for top journal space, there is an incentive to produce ‘significant’ results”. 

Campbell Harvey (2017) 

 

1. Introduction 

There is growing consensus among various disciplines that due to intensifying competition for 

top journal spaces, researchers may shift their focus away from producing scientific findings to hit 

publication standards (e.g., Simmons, Nelson, and Simonsohn, 2011; Masicampo and Lalande, 2012; 

Head et al., 2015; Krawczyk, 2015; Harvey, 2017). Chief among the standards for publication are 

statistical significance, which help journals attract more readers and citations (Fanelli, 2012). When it 

comes to search for statistical significance, researchers can be quite resourceful. For instance, 

researchers can: try many tests and statistical methods, collect less or more data, combine or transform 

specific measures, delete or keep certain observations, employ more or fewer dependent variables or 

control variables, and so on. The behavior of exploiting these discretions to search and report the most 

significant results is, however, often considered controversial or even unethical, and is generally 

referred to as p-hacking. 

 P-hacking may benefit researchers and their affiliated institutions by inflating the chance of top 

journal publications, but it impedes progress in a research area in the long run by increasing the false 

positive rates. Furthermore, higher false positives rates, combined with the undisclosed decisions made 

by researchers during the data analysis process, will lead to higher likelihood that these findings are 

irreproducible in the future. Such concern is not groundless. Open Science Collaboration (2015) 

initiated a large-scale replications of 100 experimental studies in psychology. The main finding is 

somewhat surprising: only 36% replications have significant results, a decrease from 97% in the 

original articles.1  Yet reproducibility is regarded as “a core principle of scientific progress” (Open 

Science Collaboration, 2015). Consequently, discussions of p-hacking and its potential remedies have 

attracted considerable attention, and evidence of p-hacking has been found in many disciplines (e.g., 

                                                           
1 Moreover, the mean effects size from the replication is merely half the mean effects size of the original results. 
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psychology, communication, biomedical research, finance, and economics). However, there are 

important cross-disciplinary variations in the extent of p-hacking.  

P-hacking is most notable in fields that rely on laboratory experiments to conduct analyses. 

Such fields include psychology, pharmacology and toxicology (e.g., Head et al., 2015; Harvey, 2017; 

Fanelli, 2012). Several reasons have been offered to explain this phenomenon. First, unlike areas that 

rely on public (i.e., archival) data sources, experimental studies often create their own data sets. This 

gives experimentalists additional discretions regarding sample selection (Wicherts et al., 2016). 

Second, to the extent that these data sets are often kept proprietary, follow-up replications are costly 

as it requires constructing a new sample. The difficulties in replication may ex ante enhance the 

incentive to engage in p-hacking, because results are less likely to be cross-validated later. Lastly, 

studies with smaller sample size are more subject to p-hacking, because low statistical power makes it 

harder to obtain significant results (Head et al., 2015). Furthermore, results based on a small sample is 

particularly sensitive to data manipulations, rendering the effect of p-hacking on significance level 

more powerful. 

 In this paper, we investigate the prevalence of p-hacking among experimental accounting 

studies. Aside from the above reasons that experimental accounting studies may be prone to p-hacking, 

our focus on this specific area is motivated by two additional reasons. First, experimental studies in 

accounting has been growing and taken a stronghold in the U.S. accounting academy.2 This is perhaps 

due to an important comparative advantage experimental studies have over archival-empirical research, 

that is, by randomizing the treatments and controlling for cofounding factors, experimentalists can 

easily draw causal conclusion and even identify the underlying mechanism behind a causal relationship. 

The growing importance of experimental accounting research strengthens the need to guard against p-

hacking in this area. Second, a methodological advantage in focusing on experimental studies is that, 

                                                           
2 Libby, Bloomfield, and Nelson (2002) discuss several factors that promote progress in experimental accounting research 

since 1990s. 
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papers in this area commonly report p-values, instead of t- or F- statistics, in text. This greatly facilitate 

our data collection and analyses (introduced later). 

We examine the extent of p-hacking by revealing a discontinuity in the pooled distribution of 

reported p-values. The reliance on the p-value distribution to detect p-hacking exploits an important 

feature of the Null Hypotheses Significance Testing (NHST): for an effect to be considered significant 

in experimental accounting studies, its corresponding p-value must be ≤ 0.05. This arbitrary standard 

for significance is made to facilitate the discrimination between rejected and accepted hypotheses, a 

selection also dubbed as publication bias (see e.g., Sterling, 1959; Greenwald, 1975). However, a 

potential consequence of this standard is that researchers may consider it as a hurdle for their papers 

to be published, and rely on p-hacking to turn insignificant results into significant ones, just like 

managers engage in earnings management to turn small losses into small gains.  

How does p-hacking introduce discontinuity into the distribution of p-values? Consider a 

researcher who works on a project that may yield results with uncertain p-values. Under the condition 

that her null hypothesis is no effect, the researcher will clearly prefer and keep p-values below or equal 

to 0.05. From the publication point of view, the remaining p-values can be divided into two groups, 

those that are “promising”, i.e., close to 0.05 but not there yet, and those “beyond hope”, i.e., much 

larger than 0.05. Suppose the researcher has some discretion in data collection and analyses, for 

example, she can conduct another experiment to gather more data, or delete some seemingly-outlier 

participants from the sample. Now if she got a p-value of 0.06, the marginal cost of adjusting her 

sample or methods to achieve a p-value below 0.05 should be much lower than the marginal benefit of 

doing so, which is a higher chance of publication. However, this may not be the case if the initial p-

value is very large. If such a practice is widespread, we should observe an unusual high frequency of 

p-values right below or equal to 0.05, followed by a significant decline in the frequencies of p-values 

slightly larger than 0.05.. 
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Using a sample of 2,404 p-values reported in 240 experimental accounting articles published 

in three top accounting journals (i.e., Journal of Accounting and Economics, Journal of Accounting 

Research, and The Accounting Review), we document evidence consistent with this prediction: the 

distribution of these p-values exhibits a sharp discontinuity at 0.05. Moreover, the frequency of “just” 

significant p-value (0.05) is higher than the frequencies of 0.04 and 0.03, as if researchers prefer “just” 

significant results to more significant ones. Interestingly, the frequency of 0.06 is unusually low: it is 

lower than the frequency of 0.07, suggesting that at least part of the marginally significant results from 

the articles are inflated into significant results, resulting in an over-representation of just-significant p-

values.  

It is worthwhile to point out that publication bias cannot explain the non-monotonic pattern of 

reported p-values, because the underlying assumption of publication bias is that lower p-values should 

be strictly preferred, resulting in a monotonic decreasing frequency of p-values as we move from 0 to 

1. This monotonic selection turns out to be a useful benchmark that portrays the “natural” distribution 

of p-values in the absence of p-hacking, allowing us to decompose the observed frequency of p-values 

into two parts: the part due to publication bias, and the part due to p-hacking.3 

Theoretically, any distribution that is monotonically decreasing in [0, +∞) can be potential 

candidates for the benchmark, we follow Masicampo and Lalande (2012) and Harvey, Liu , and Zhu 

(2016) to choose an exponential distribution to fit our distribution. The exponential curve matches well 

with the empirical distribution of p-values in our sample: the R-squared from the fitting exercise is on 

average above 98%. The discontinuity around 0.05 generates a large residual that cannot be explained 

by publication bias, we attribute this residual to inflation from p-hacking. After removing the inflation 

component, our conservative estimate from the fitting shows that expected frequency of 0.05 should 

                                                           
3 There may be also other potential selection procedures that shape the distribution of p-values. For examples, authors might 

simply censor themselves; there is also a potential feedback effect as outlined by Henry (2009): editors and referees prefer 

significant results, pushing authors to generate more stars, this may further increase the requirement from editors and 

referees. However, the monotonic decreasing benchmark distribution are able to capture all those non-increasing selections 

(i.e., lower p-values are more likely to be selected). 
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be 23% less than observed. The residual of fitting for 0.05 is also much larger than the mean residuals 

of other p-values.  

Having showed the existence and extent of p-hacking, we turn to examine what predict the 

extent of p-hacking. By exploiting the cross-sectional variations in authors’ incentive and costs to 

conduct p-hacking, we identify five important author and paper characteristics. For example, we find 

that p-hacking is more prevalent among articles written by authors facing higher publication pressure 

(untenured researchers), authors with stronger risk-taking incentive (male researchers); moreover, our 

results are also stronger among the sample of sole-authored papers (lower costs of p-hacking), and the 

sample of p-values appeared earlier in articles (p-hacking for main results). These cross-sectional 

variations in the extent of p-hacking again confirm that the discontinuity is indeed caused by p-hacking.  

However, we also document stronger results among articles written by authors working in (or 

graduated as PhD from) higher ranking schools. Additional test also shows that more cited articles 

exhibit a greater extent of p-hacking. 

While we have argued that, due to the public availability of archival data, the extent of p-

hacking may be lower in archival research than in experimental accounting studies. We empirically 

investigate whether archival accounting studies also exhibit p-hacking. Our results show a highly right-

skewed histogram of p-values from archival accounting studies, but we do not observe a significant 

discontinuity at 0.05 based on these articles. This result provides suggestive evidence that p-hacking 

problem in archival accounting studies (if any) is not as severe as experimental accounting studies.  

However, we still cannot rule out the possibility that archival studies regard p = 0.01, rather than 0.05, 

as the p-hacking target.   

Lastly, we provide some solutions to help guard against false positives resulted from p-hacking. 

We first introduce three broad solutions developed from the statistics literature to adjust for multiple 

testing, and then generate simulated “experiments” with to demonstrate the application and 

effectiveness of these methods. The simulation results show that most of the significant findings from 
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p-hacking are unlikely to survive after adjusting for multiple testing or applying the Bayesian 

perspective. We also introduce the Bayesian approach and discuss its potential application, and provide 

some guidelines for journals that try to improve the disclosure transparency from authors. 

The rest of this article proceeds as follows. In Section 2, we clarify a basic confusion on the 

definition of p-value and review the related literature on p-hacking. We introduce our sample 

construction and empirical strategy in Section 3, and present evidence on the existence and extent of 

p-hacking in Section 4; Section 5 further explores the factors that shape researchers’ incentive to 

conduct p-hacking, Section 6 presents additional tests. Section 7 includes the proposed remedies for p-

hacking, and we conclude in Section 8. 

2. Background information and related literature 

2.1. Understanding p-values: what are we hacking? 

 The use of p-value null hypothesis testing is widespread in science. Originally introduced by 

Fisher (1925), it is designed to separate findings from noises by measuring the extent to which the data 

contradicts a hypothesis (i.e., the null hypothesis, and no alternative hypothesis are defined). Formally, 

the Fisherian p-value is the probability of observing an outcome or more extreme outcomes given the 

null hypothesis being true. Users of the Fisherian approach may evaluate a hypothesis based the 

corresponding p-values, with smaller p-values indicating stronger evidence against null. However, 

such evaluation can only be applied to the particular data set under examination, implying that 

inferences based on this approach may not generalize. To draw from Neyman and Pearson (1933): “as 

far as a particular hypothesis is concerned, no test based upon the theory of probability can by itself 

provide any valuable evidence of the truth or falsehood of that hypothesis”.  

 Aware of the above limitation of the p-value, Neyman and Pearson (1933) came up with an 

alternative framework. The key argument of Neyman and Pearson is as follows. While we may not be 

able to learn from a single p-value (or any other test statistics) on the truth or falsehood of a given 

hypothesis, there is one way to make sure that in the long run, we make the right decisions most of the 
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time. That is, if we always follow the rule of rejecting the null when p-value is lower than a 

predetermined Type I error rate, say 0.05, then over repetitive experiment, we will reject the null when 

it’s true around 5% of the time. However, over the years after the Fisherian p-value is combined with 

the Neyman and Pearson (1933) framework to form the current Null Hypothesis Significance Testing 

framework, p-value is often misinterpreted even among scientists in many fields (see, Pashler and 

Harris, 2012). Specifically, in NHST, the p-value of a specific test is calculated, and then compared 

with a predetermined Type I error rate (e.g., α=0.05). If p-value < α, it is usually interpreted as evidence 

rejecting the null hypothesis and accepting the alternative; otherwise, accept the null and reject the 

alternative. This comparison creates one confusion: people often treat p-value as equivalent to the Type 

I error rate (Harvey, 2017). The confusion would temper many to think that a p-value gives the 

probability that the null hypothesis is true, or the probability that a result is driven by chance alone.4  

This is the most basic mistake in the use of p-value. 

 A better understanding of p-value enables us to say more on the nature and consequence of p-

hacking. Consider the following practices of p-hacking from a researcher, for example, running many 

experiment sessions and cherry-pick the most significant session to report, collecting multiple (related) 

outcome variables and choose the one that gives the more significant results. Finally, the researcher 

end up with a p-value of 0.01. This low p-value resulted certainly does not mean that there is only 1% 

percent probability that the null hypothesis is true, or that if other researchers repeat the same 

experiment for a large number of times, they will obtain significant result 99% of the time. Quite 

differently, the p-value of 0.01 merely means that, given the null being true, there is only 1% 

probability that we observe the result or more extreme results. However, in this example, the extreme 

result obtained by the researcher is very likely due to p-hacking: because the researcher have sampled 

                                                           
4 In mathematical terms, the definition of p-value can be written as 𝑃(𝐷|𝐻0), which is the probability of observing an effect 

(or more extreme) D given the null is true. However, p-value is often misinterpreted as 𝑃(𝐻0|𝐷), which is the probability 

of the null being true given an observed (or more extreme)  effect D.  
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the data long enough and hard enough, he or she is almost bound to find some extreme observations.5 

Therefore, in the end, p-hacking will lead to higher false positive rates. 

2.2. Literature on p-hacking 

 The literature generally defines p-hacking as the process of exploiting undisclosed flexibility 

in data collection and analyses to cheery-pick the most significant results, while filing away the rest 

(for examples of p-hacking, see e.g., Simmons, Nelson, and Simonsohn, 2011; Head et al., 2015; 

Harvey, 2017).6 The concerns over the negative effect of p-hacking can be traced back to Sterling 

(1959), who point out an unconscious type of p-hacking. When journals only publish papers with 

significant results (i.e., the publication bias), those experiments that do not work will not be observable 

to other researchers, who may independently repeat such experiments until a significant finding occurs 

by chance. The consequence is a higher false positive error than expected.  

 While p-hacking has been recognized for many years, the concern that it can be a widespread 

problem has only recently aggravated. Two main reasons are discussed in the literature. First, there is 

increasing bias against negative findings over the recent decades. Fanelli (2010) documents that in 

social science (such as Economics and business, psychology), it is more difficult to see published 

results that do not support the main hypothesis developed in the paper than in other “hard” science 

(such as Space Science and Physics). Fanelli (2012) and Head et al. (2015) point out that negative 

results are disappearing and significant ones are more likely to be published in many fields. Second, 

the competition for top journal space may have intensified. Researchers and institutions are 

increasingly evaluated based on their top journal publications and the citations these papers generate 

(Young, Loannidis, and Al-Ubaydli, 2008; Statzner and Resh 2010), which enhances the incentive to 

publish novel and more significant findings in top journals. This bias against negative findings, 

                                                           
5 There are also other reasons why p-value can be low. For example, it could be due to the poor ability of the hypothesis to 

explain the data, or a misspecified test. 
6 In addition to p-hacking, the practice of trying many tests and analyses until none significant results become significant 

has received other names, for example, data dredging or data fishing (Selvin and Stuart, 1966) , data snooping (White, 

2000). 
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combined with the increasing competition for top journal space, likely contribute to researchers’ 

stronger incentive to conduct p-hacking. 

 The growing concerns over the widespread of p-hacking have accelerated research on it in 

many areas. As we have outlined in the introduction, p-hacking induces kink around the significance 

threshold (0.05) in the cross-sectional distribution of p-values. Masicampo and Lalande (2012) first 

apply the distribution of p-values to examine p-hacking in experimental psychology. Simonsohn, 

Nelson, and Simmons (2014) term this method as the use of “p-curve” and further promote its 

usefulness to detect p-hacking, which is similar to the use of distribution of earning numbers to detect 

earnings management in accounting research (see, e.g., Burgstahler and Dichev, 1997). This method 

subsequently stimulates p-hacking research in many fields. Head et al. (2015) employ this method to 

study the extent of p-hacking in 14 disciplines and find that it is widespread. Krawcyzk (2015) 

documents too many “just significant findings” in experimental psychology from more than 5,000 

papers.  Vermeulen et al. (2015) take this method to communication science, and document similar 

evidence. Moreover, they also find that 8.8% of the 5,834 p-values in their paper are misreported, 74.5% 

of which are too low. Brodeur et al. (2016) apply similar methodology to articles published on top 

economics journals, and document strong evidence of p-hacking. They also explore how the extent of 

p-hacking varies across several author and article characteristics.  

 The paper closest to ours is Khan and Tronnes (2018). They specifically focus on experimental 

audit research and find a kink in the distribution of p-values. Our paper extents theirs in the following 

ways. First, we include all topics in experimental accounting research, and focus only on articles 

appeared in top accounting journals. It may be more unsettling that p-hacking is widespread in even 

the most prestigious journals. Second, Khan and Tronnes (2018) exclude vague p-values (e.g., p < 0.05) 

in their sample, which may inflate the relative frequency of 0.05 and extent of p-hacking if many such 

vague p-values have true values close to 0.04 or 0.03.  Our paper addresses this issue by empirically 

estimating the distribution of vague p-values using their underlying test statistics and degree of freedom. 
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Third, as mentioned previously, we conduct rich cross-sectional analyses that helps to understand the 

determinants of p-hacking, and especially how p-hacking affects future citations. Lastly, we also 

briefly examine evidence of p-hacking in archival papers. It is reassuring that archival research does 

not display a discontinuity around 0.05 in the distribution of p-values.  

Furthermore, our article extend the above works by making serious attempt to provide statistical 

solutions that may help guard against p-hacking. We demonstrate the usefulness of procedures to adjust 

for multiple comparisons when the chance of false positives are high, and also introduce the Bayesian 

approach as a potential alternative method. However, we also emphasize that transparent disclosure 

from researchers is necessary to facilitate the implementation of the strategies we have proposed. 

3. Our sample and empirical strategy 

3.1. Sample construction 

Our aim is to include in our sample as many experimental accounting studies from influential 

accounting journals as possible. We thus use a computer program to search among all articles on three 

top publishers of experimental studies ─The Accounting Review (TAR), Journal of Accounting 

Research (JAR), and Journal of Accounting and Economics (JAE) ─ from 1990 to 2016.7 We record 

an article if its abstract contains keyword “experiment”, but not “(quasi-) natural experiment”.8 A total 

of 311 papers meet this criteria, we then download them for further data collection. We exclude articles 

that do not mention any p-values in their text (27 articles), and articles that are retracted due to Dr 

Hunton’s fraud (6 articles). In the end, we have 281 articles in our final sample, with 193 from TAR, 

84 from JAR, and 4 from JAE, accounting for 14.9%, 10.5%, and 0.3% percent of the total number of 

articles published in TAR, JAR, and JAE during our sample period, respectively.9 In our main sample, 

                                                           
7 Our sample period starts from 1990 because that’s when Dallas Ranking for accounting divisions across the world starts 

to be available, which we will need to conduct subsample analysis.  
8 Alternatively, we can also rely on JEL Classification code to distinguish experimental studies from archival studies, but 

this information is not provided on the website of the two journals. 
9  When counting the total number of articles, we exclude any articles that are generated by the comments and/or discussions 

of existing papers. In addition, TAR frequently publishes book reviews in our earlier sample period, these are also excluded 

from the count. 
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we also exclude papers that only report vague p-values such as p < 0.05 (41 articles). The main sample 

thus contains 240 articles. 

To analyze what affect the extent of p-hacking, we further collect a series of author and article 

characteristics that may be related to researchers’ marginal benefit and cost of p-hacking. Researchers 

with greater career concern are likely to have stronger incentive to conduct p-hacking (Fanelli, 2012). 

We thus measure researchers’ career concern by calculating the proportion of tenured authors for an 

article (Tenured), and by counting the average number of years since a researcher earns PhD at the 

time of the article’s publication (Experience). Head et al. (2012) state that prestigious schools impose 

higher tenure hurdles and thus publication pressure on researchers. To measure academic ranking, we 

use the mean ranking of authors’ affiliated institutions (School Ranking), as well as the mean ranking 

of the institutions where each author earns PhD degree (PhD School Ranking). We distinguish articles 

with no female author(s) from these with at least one (Female), as males tend to be more risk-taking 

than females (see, e.g., Byrnes, Miller, and Schafer, 1999). To account for the coordination costs 

among researchers, we also count the number of authors for each article (N_ Authors). We retrieve the 

total number of participants in an article’s experiment(s) as various p-hacking “techniques” involves 

sample manipulation (N_ Participants). Because researchers may revise their hypotheses ex post as 

directional in order to report lower one-tailed p-value, we construct a dummy variable equals to one if 

all p-values in an article are two-tailed, and zero otherwise (Two-tailed). Lastly, we collect the number 

of citations for all articles from both Google Scholar (Google_Citation) and Web of Science 

(Web_Citation) to examine the relation between p-hacking and citations. 

The variables described above come from various sources. To obtain tenure, graduation, and 

school ranking information for each researcher, we search for “author name” + “affiliated school” on 

google. Most of these searches deliver an author’s latest CV, from which we can determine the year of 

tenure and graduation. We then collect information on school ranking from The UTD Top 100 Business 

School Research Rankings. Since our focus is experimental accounting studies, we are interested in 
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the ranking of accounting division of a specific university, we thus choose to rank the schools by the 

number of accounting top journal publications in a given year.10 Note that for each article-author-school 

combination, the ranking for that school is two years before the publication of that article. We introduce 

this two-year lag to capture the ranking status while a paper is written rather than when it’s published. 

If a school is not on the ranking list, we replace its ranking with the lowest ranking number on the 

ranking list in a specific year. Finally, if we cannot find CV for an author, we rely on other credible 

sources to obtain as much information as possible.11 We manually check each article to obtain the 

number of participants, in articles where multiple experiments are conducted, we sum the number of 

subjects from the experiments. Lastly, we read all articles to determine whether all p-values in a paper 

are based on two-tailed tests. 

Table 1 offers a glimpse of the characteristics of experimental studies in our sample. An average 

article in our sample has 2.2 authors, 117 subjects in the experiments, and mentions 18 p-values in its 

text. About 50% of the articles contain at least one female author, 34.3% of the articles report only 

two-tailed p-values, and 28.7% are sole works. In addition, an average paper is published 9 years after 

its authors obtain their PhD degree. When we break the total sample by journals, we notice that about 

two third of the articles in our sample comes from TAR, which publishes more behavioral research 

than JAR does.12  We also find that the variables do not exhibit big differences between two journals.  

[Insert Table 1 about here] 

3.2. Methodology 

After transforming all downloaded pdf files into txt format, we use a Python script to search 

for numbers between 0 and 1 immediately preceded by “p =”, “p-value =”, “ptwo−tailed  =”, and 

“pone−tailed =”, regardless of spacing or capitalization. Unlike prior studies such as Head et al. (2015) 

and Khan and Tronnes (2018), we also collect p-values after inequality operators, such as “p <”, or “p 

                                                           
10 We choose three top journals in the accounting field: TAR, JAR, and Journal of Accounting Economics (JAE). 
11 Those sources include school website, LinkedIn, and BYU Accounting author search, etc. 
12 Differences in number of observations among variables are due to missing values. 
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≤”.  Importantly, we omit any numbers that indicate significance thresholds instead of real p-values in 

an article; for example, numbers appeared in sentences such as “*, **, *** Indicates p< 0.10, p<0.05, 

and p<0.01, respectively” are discarded. Our script cannot retrieve p-values within tables, because the 

formatting of tables in pdf is messy and varies from article to article, rendering the search impractical. 

However, by focusing only on p-values mentioned in the text, we ensure that a p-value is not recorded 

twice in our sample; furthermore, researchers are more likely to mention in text their main results’ 

significance level than other covariates’, this suits the examination of our hypothesis that researchers 

have the strongest incentive to engage in p-hacking for their key findings. 

Our initial search yields 6,144 p-values. However, not all of these p-values are informative 

about the extent of p-hacking. We are particularly interested in any irregularities in the cross-sectional 

distribution of the p-values at points such 0.05, and 0.10, and thus exclude all p-values larger than or 

equal to 0.155, which leaves 4,766 p-values in our sample. Because we cannot uncover the exact p-

values for all p-values reported after inequality operators (e.g., < or ≤), we focus on exact p-values in 

our main sample, which includes 2,404 (50.4%) p-values from the 4,766 p-values.13 We then pool these 

p-values across articles and time to generate a distribution of p-value.  

It is worthwhile to emphasize two advantages of our text-scraping methodology. First, it does 

not require us to have further knowledge about the articles in our sample, such as the topic of interest, 

hypotheses tested, and design of experiments, allowing us to examine all experimental articles that 

study any accounting topics. Second, since it is a substitute for hand collection, it minimize biases from 

data collectors such as research assistants, either consciously or unconsciously, to collect data that 

conforms to this paper’s prediction.14   

                                                           
13 Many p-values reported after inequality operators are placed in footnotes for robustness check or additional tests, where 

no information about the test statistics or degree of freedom are provided. However, if simply we pool these p-values with 

our main sample, the main results will only become stronger, because “<” and “≤” are commonly followed by threshold 

value 0.05. We present analyses to deal with these p-values in Section 4.  
14 Nonetheless, one may argue that our script can still produce some noises, for example, it may capture some irrelevant 

numbers, but ignore p-values for an article’s key results. To alleviate such concerns, we randomly select 30 articles from 

our sample, and for each article, we identify all the hypotheses tested. We then check if the p-values extracted by the script 

from an article are the significance level for hypotheses testing in that article. Of the 260 p-values from the 30 articles, 251 
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4. Empirical results  

We present two sets of results to determine whether p-hacking to turn insignificant results into 

significant exist or not. First, we provide graphical evidence in the form of histogram on the cross-

sectional distributions of the p-values. Second, we fit the distribution of p-values to an exponential 

distribution to quantify the extent of p-hacking.  

4.1. The cross-sectional distribution of p-values 

We first plot a histogram using all p-values in our sample, and choose a bin width of 0.001. The 

result is shown in Panel A of Figure 1. One bin stands out from the distribution: there is an obvious 

bump in the frequency of interval right below the significance threshold, i.e., (0.049, 0.05], which we 

highlight using bold bar. The frequency of this interval (122) is even higher than the frequency for 

interval (0.039, 0.04] and (0.029, 0.03], which are 88 and 111 respectively, as if less significant p-

values are preferred for publication. Interestingly, we observe that the frequency of p-values right 

below 0.06 is lower than that below 0.07. The two discontinuities around the conventional significance 

threshold cannot be explained by the publication bias, but is in line with the presence of p-hacking to 

make marginally significant results become significant. 

As noted in Table 1, the average article reports 10 p-values in our sample, however, there is 

substantial variation among articles in terms of the number of p-values: the highest number is 64, while 

the lowest is 1. Furthermore, the number of p-values reported (or number of tests conducted) may be 

related to the overall significance level or robustness of the results: a researcher may conduct and report 

more tests when these tests have p-values below the significance threshold. Therefore, it is possible 

that certain articles that report many p-values are driving the main results. To alleviate this concern, in 

Panel B we weight each p-value by the inverse of the number of p-values reported in an article, thus 

giving lower weight to those articles with many p-values. The discontinuity around threshold becomes 

                                                           
(96.12%) are the significance level of the main hypotheses tested, the rest 9 p-values belong to 6 articles. Among the 6 

articles that do not have p-values for the main hypotheses, 2 do not discuss the p-values in their text, the other 4 do not 

report exact p-values (i.e., p < 0.05). These results suggest that our script capture relevant p-values generated from 

hypotheses testing in experimental studies, and that our script are unlikely to generate systematic biases in our sample. 
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more striking after weighting: the weighted frequency of p-values right below 0.05 is even higher than 

that of p-values right below 0.02. Meanwhile, there is also a non-monotonic pattern in the distribution 

around 0.10, as if it is more desirable than 0.09 and 0.08. Overall, the weighted distribution of p-values 

shows a greater extent of p-hacking. This result seems to suggest that articles report less p-values tend 

to report a higher fraction of “just” significant results.  

[Insert Figure 1 about here] 

The Figure also shows that articles in our sample prefer reporting p-values with two decimal 

places, which accounts for 40% of the total number of p-values, despite there are only 16 numbers with 

two decimal places below or equal to 0.15.15 This creates the indented histograms we observe in Figure 

1. In Panel A of Figure 2, we use only p-values reported with two decimal places to plot another 

histogram. The resulting histogram shows that the unusual high frequency of p-values in interval 

(0.0475, 0.05] in Figure 1 is entirely driven by p-value = 0.05, which was found 122 times in our 

sample. The same also holds for p-value = 0.04 and 0.03. 

In Panel B, we round all p-values to two decimal places, count the frequency of the 16 p-values 

(0.00 to 0.15), and plot another p-curve. Similar pattern emerges, though the difference in frequency 

between 0.05 and 0.04 is less salient. This is unsurprising because rounding effectively sets the bin 

width to 0.01, thus muting the acuteness of the histogram to detect marginal incentive of p-hacking at 

0.05.  

[Insert Figure 2 about here] 

In sum, the results presented in this subsection provides evidence on the existence of p-hacking 

among experimental accounting studies to inflate the significant results. Since 0.05 is the maximum p-

value for an effect to be considered as statistically significant in experimental accounting research, the 

relative abundance of 0.05, together with the relative scarcity of 0.06, provides strong evidence that 

                                                           
15 Among the 2,404 p-values, the decimal places of a p-value range from one to five, the frequencies of the five different 

lengths are 2, 1013, 1257, 130, and 2, respectively. 
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there are too many results with “just significant” p-values, indicating target beating behavior. Such 

irregularity in the distribution of p-values present challenges for any other potential explanations.  

4.2. Fitting the p-curve to an exponential distribution 

In order to gauge the extent of p-hacking among our sample articles, in this subsection, we 

follow Masicampo and Lalande (2012), and Harvey, Liu, and Zhu (2016) to fit the histogram of p-

values to an exponential distribution. The choice of a rapidly decreasing exponential curve aims to 

approximate the effects of strong publication bias, which is substantiated by the highly right-skewed 

distribution of p-value in previous section. In doing so, we are able to roughly estimate the expected 

frequency of p-values without p-hacking, and quantify its impact on the magnitude of inflation.  

Because p-values with two decimal places are more frequently reported, in order to have a 

smooth histogram for fitting, we only use the two histograms in Figure 2 for this exercise. The results 

are presented in Figure 3. In Panel A, the sample only includes p-values with two decimal places. An 

exponential curve fits the histogram quite well except for two p-values: 0.05 and 0.06, the former lies 

well above, and the latter well below, the curve. Another less noticeable discontinuity appears in p-

value 0.10. The frequency of observing 0.11 is merely half the frequency of observing 0.10. We posit 

that the reason for this discontinuity is that 0.10 is also a target to beat: p-values 𝜖 (0.05, 0.10] are 

deemed marginally significant, while p-values > 0.10 are insignificant. The importance of this target, 

however, is subordinate to 0.05. We observe similar pattern at Panel B, where all p-values are rounded 

to two decimal places. 

[Insert Figure 3 about here] 

We further tabulate the fitting results in Table 2. For each, p-value from 0.01 to 0.15 (i.e., 0.01, 

0.02, 0.03… 0.15), we report its observed frequency and expected frequency implied by the fitting 

from Figure 3, and calculate how much the former deviates from the latter. In Panel A of Table 2, 

where only p-values reported with two decimal places are used, we observe that the residual at 0.05 is 

the highest. However, residuals are also sizable at p-values such as 0.03, 0.04, and 0.06, all of which 



17 
 

are negative. This suggests that compared with p-value = 0.05, p-value = 0.03 and p-value = 0.04 

should have higher frequencies than what we observe here. We observe similar results using all p-

values rounded to two decimal places in Panel B.  

[Insert Table 2 about here] 

We conduct two post hoc pairwise comparisons to determine if the residuals from fitting for 

0.05 and 0.06 are significantly different from the mean residuals for the rest p-values in the two 

histograms. The comparison is based on Dunnett’s Test (pairwise versus reference group). 16 

Specifically, we treat residuals for p-values except 0.05 and 0.06 from exponential fitting as reference 

group, and compare if the residuals for 0.05 and 0.06 is significantly different from the mean residual 

of this reference group. The significance level obtained is adjusted by times of comparison. Results are 

reported in Table 3. Panel A and B of Table 3 are based on the fitting in Panel A and B in Figure 3, 

respectively. Despite the small sample size (16 residuals), we find that in both Panels, the residuals at 

0.05 are always much larger than the reference group. Residual at 0.06 is much smaller than the 

reference group in A, though it is statistically insignificant; in B, residual at 0.06 is indistinguishable 

from reference group.    

In terms of magnitude, the fitting shows that the expected frequency of 0.05 should be 24.88% 

to 26.72% lower than the observed frequency; for 0.06, the expected frequency should be 13.16% to 

38.46% higher than the observed. As we stressed in section 4.1., histogram based on rounded p-values 

is not sharp enough to detect the strongest incentive to engage in p-hacking at 0.05. Thus the results in 

                                                           
16 Dunnett’s test is a many-to-one comparison procedure that compares the mean of every treatment group procedure 

against the mean of a single control group. Each comparison results in a test statistics that is calculated as below: 
�̅�𝑖−�̅�𝑐

√2×𝑀𝑆𝑒𝑟𝑟𝑜𝑟(
1

𝑛𝑖
+
1

𝑛𝑐
)
, 

where �̅� refers to the mean of each group, i indexes each treatment group, and c the control group. 𝑀𝑆𝑒𝑟𝑟𝑜𝑟  is the mean 

squared error term for the whole sample. Lastly, 𝑛𝑖 and 𝑛𝑐 refer to the number of observations for treatment group i and 

control group. The degrees of freedom for this test, N – k, equal to the total number of observations in all groups minus the 

number of groups (including the control). The p-values from Dunnett’s test are determined by looking up the test statistics 

in a table of critical values that already adjusted for family-wise error rate. Compared with other post hoc pairwise 

comparison methods (e.g., Bonferroni, Tukey's and Scheffé's methods), Dunnett’s test is more powerful as it conducts 

fewer comparisons (if there are k groups, Dunnett’s test makes k-1 comparison while others make 2×k×(k-1) comparisons), 

and thus does not result in unnecessarily low critical p-values. See Dunnett (1955) for more details.. 
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Panel B of Table 3 can be viewed as a lower bound for our results. Taken together, the results in this 

subsection show that there is a large proportion of just-significant p-values that cannot be explained 

by a decreasing selection process alone, suggesting that p-hacking has a material impact on the 

distribution of p-values.  

[Insert Table 3 about here] 

4.3. P-values reported after inequality operator 

In our initial sample, 2,362 p-values scraped from research articles are reported after inequality 

operator (e.g., p < 0.05), we term these numbers “vague” p-values. The distribution of these p-values, 

which is reported in Panel A of Figure 4, shows that the majority of numbers reported after “<” are 

significance thresholds such as 0.001, 0.01, 0.05, and 0.10. The frequency of these four numbers 

accounts for 69.98% percent of the 2,362 p-values. We are particularly interested in p-values reported 

as p < 0.05 and p < 0.10, since redistributing the true values behind the two numbers may invalidate 

our main conclusion. For example, p-values reported as p < 0.05 can be any number between 0.00 and 

0.05, excluding these p-values may cause an under-representation of p-values such as 0.03 and 0.04 in 

our main sample, thus causing the discontinuity around 0.05 we observed in the distribution of p-values.  

[Insert Figure 4 about here] 

To alleviate this concern, we attempt to calculate the true values for p-values reported as p < 

0.05 and p < 0.10 (396 such cases), by using the test statistics and degree of freedom information 

provided in research articles. However, we notice that in many cases, such information is not 

provided.17 In the end, we are able to reveal the exact p-values for 104 out of the 396 cases. While it is 

infeasible reveal all of the exact values for such p-values, the distribution of the 104 p-values may 

provide some insights on when researchers prefer to report “p <” instead of “p =”.  

                                                           
17 There are several reasons for not reporting such information. For example, many p-values are reported in footnotes for 

additional tests or robustness checks; multiple p-values are reported together as “all p-value < 0.05”. Papers published in 

the beginning of our sample period are more likely to omit such information. 
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As shown in Panel B of Figure 4, the distribution of the 104 exact p-values indicates that, for a 

p-value smaller than 0.05, researchers are more likely to report it as “p < 0.05” when it is closer to 0.05 

than to 0.00. This is reasonable, since an investigator has strong incentive to report a low p-value (e.g., 

0.02) exactly to demonstrate statistical significance, whereas she may find it in her interest to hide the 

exact value of a p-value and its test statistics when it is very close to 0.05 (e.g., 0.0486). This selective 

reporting incentive suggests that for the rest p-values that we have no information to calculate exact 

values, the distribution of their exact values are likely to be even more concentrated near 0.05 than the 

distribution Figure 4. We then impose the same distribution in Figure 4 to the rest 292 p-values, and 

stack the estimated distribution of the 396 vague p-values (i.e., p < 0.05 and p < 0.10) with the 

distribution of exact p-values used in our main sample. The resulting distribution is reported in Panel 

A of Figure 5, which shows stronger evidence of p-hacking than using the sample of exact p-values 

alone. This is consistent with our expectation that a p-value slightly below 0.05 is more likely to be 

reported vaguely than one that is far below 0.05.   

While our results is quite robust to including vague p-values reported as p < 0.05 and 0.10, 

there are also some p-values reported as p < 0.04 (p < 0.03), and if the exact values of these p-values 

are quite close to 0.04 (0.03), omitting them may again inflate the extent of p-hacking. We repeat the 

procedure to manually compute the exact values for p < 0.04 and 0.03. The data shows that exact p-

values behind p < 0.04 (0.03) are approximately uniformly distributed between 0.03 and 0.04 (0.02 

and 0.03). The uniform distribution is then applied to all other vague p-values except p < 0.001, p < 

0.01, p < 0.05, and p < 0.10. For instance, the exact value of a p < 0.09 can be any number between 

0.08 and 0.09. We further include these redistributed vague p-values (i.e., p < x, where x = 0.02, 0.03 … 

and 0.15, excluding 0.05 and 0.10) to the sample used in Panel A. By doing so, we utilize all of the p-

values (4,766) scraped from experimental accounting articles to plot a new distribution, which we 

report in Panel B of Figure 5. After including all vague p-values, we still observe strong evidence of 

p-hacking. For example, if we fit the histogram on the right side of Panel B to an exponential 
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distribution, the expected frequency at 0.05 will be 24% less than what we actually observe. Overall, 

the main message from Figure 5 is that, after taking into account the impact of vague p-values on the 

distribution of p-values, our main results stand valid. 

[Insert Figure 5 about Here] 

5. What explain the extent of p-hacking?  

In this section, we study the following question: ex ante, what help potential readers (including 

referees and editors) to reasonably forecast the extent of p-hacking?  We hypothesize that when 

determining the extent of p-hacking, researchers weigh the potential benefits of p-hacking against the 

costs of doing so. Main benefits include higher chance of publication, more influence, and better career 

opportunities for authors; potential costs include coordination costs among authors, availability of 

discretion in data analyses, and reputation costs. Based on this cost-benefit framework, we propose 

and test 7 factors using all p-values rounded to two decimal places.18 

5.1. The benefits of conducting p-hacking 

Researchers are highly rewarded for top journal publications, such rewards can be of various 

forms. Tenure is perhaps the most important reward at the early stage of a researcher’s career. By 

granting a permanent post for a researcher, tenure greatly mitigates career concern. Therefore, 

untenured researchers are under greater pressure to publish, especially in research institutes with higher 

tenure requirements. We posit that p-hacking to increase the chance of publication should be most 

prevalent among researchers that have not tenured yet, hence the kink around 0.05 on the p-value 

histogram will be sharper for articles written by such researchers. We classify our sample articles into 

two groups. The first group include articles whose authors are all non-tenured, and the second group 

includes the rest.19 

                                                           
18 Subsample comparison based on tail choices of p-values differences in extent of p-hacking between two subsamples, and 

thus are omitted for the sake of space. 
19 We determine an author to be tenured only if he or she is tenured two years before the publication of the article of interest.  
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Next, we examine whether institutions’ rankings ─ as measured by their numbers of top journal 

publications ─ are related to the extent of p-hacking. As Fanelli (2012) noted, research institutions and 

other organizations are increasingly evaluated by the number of top journal publications produced by 

their researchers. It is likely that high ranking institutions have higher tenure requirements, which 

imposes additional pressure on researchers to publish more papers in top journals, and consequently, 

they engage in greater extent of p-hacking. 20   Institution ranking is measure by the number of 

publication in three accounting top journals, obtained from “The UTD Top 100 Business School 

Research Rankings”. For each article published in year t, we use the year t-2 School Ranking as defined 

in Section 3.1, and separate articles into high and low institution ranking based on its sample median. 

We also repeat the above procedure to split sample based on variable PhD School Ranking. 

5.2. The costs of p-hacking  

P-hacking is not costless. In particular, it can be perceived as a type of “publication risk-taking”: 

as the extent of p-hacking intensifies (e.g., manipulate data to a greater extent, with the extreme case 

being data fabrication), researchers might be able to convince potential readers and referees with more 

starring results; however, once being detected, the authors may lose credibility and reputation. 

Consequently, the extent of p-hacking will be higher when researchers are less risk-averse.  Moreover, 

p-hacking may require teamwork and coordination among co-authors. For example, researchers co-

authoring a paper may need to concur with each other on how to identify and treat outliers, whether to 

collect more data, and whether to combine or transfer specific measures. If one (undisclosed) decision 

is controversial but yields the most significant results, the author who is in charge of data analysis 

might need to convince other authors why they should make that choice. The costs of p-hacking thus 

increase with the need for coordination and communication.  

                                                           
20 Alternatively, researchers affiliated with high ranking schools might be able to come up with research questions that have 

larger true effects, or they may simply be more rigorously trained, thus reducing the need and incentive to engage in p-

hacking. 
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We use two simple procedures to test the significance of the two type of costs outlined above. 

First, we separate articles by whether their author(s) contain female researcher. Prior works document 

that males tend to exhibit stronger risk-taking incentive under various scenarios (see, e.g., Byrnes, 

Miller, and Schafer, 1999; Charness and Gneezy, 2012, and Faccio, Marchica, and Mura, 2016). Hence, 

it is reasonable to suspect that male researchers are more willing to trade the potential uncertainties for 

higher chance of publication, and that articles writing by them exhibit more aggressive p-hacking. 

Second, we distinguish sole-authored paper from the rest. Compared with authors that collaborate with 

each other, sole authors can safely avoid the coordination costs of p-hacking, as he or she no longer 

needs to disclose the detailed research process to others. The above discussion leads to the following 

prediction: male researchers and sole-authors will show more aggressive p-hacking. 

5.5. Other article characteristics 

Lastly, we study whether several article characteristics are related to the extent of p-hacking. 

Specifically, we focus on the number of participants in an article’s experiments, and the citations an 

article receives. First, as mentioned before, researchers can decide whether to conduct additional 

sessions after seeing their results. For example, researchers can conduct one more experiment session 

if the initial results are weak but not significant yet, they can also stop collecting data right after 

obtaining significant results. We presume that those behaviors will result in more participants in a 

studies’ experiment(s). Put differently, higher number of participants is the consequence, rather than 

the cause, of p-hacking. Second, we check whether an article’s tail choice ─ reporting one- or two- 

tailed p-values ─ is related to the extent of p-hacking. For a t-test, its one-tailed p-value equals to two-

tailed p-value divided by 2, this may explain the finding that, in our sample, around 64% of the articles 

report one-tailed p-values (see Table 1), though the commonly cited reason for reporting one-tailed p-

values is that those articles’ hypotheses are directional. Because dividing the p-values by two will shift 

the distribution towards zero, without affecting the relative frequency of different p-values, we do not 

have a stance on whether and how tail choice will make the frequency of 0.05 more outstanding. 
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 We test the cross-sectional variations in p-hacking by fitting the distribution of p-values for 

each pair of subsamples to an exponential distribution, and report the magnitude of their residuals 

(forecasted minus observed frequencies) at 0.05 in Table 4. The findings are in general consistent with 

the predictions derived from our cost-benefit framework. For example, the residual at 0.05 from the 

subsample of articles without tenured author exhibit is much higher than that from articles with tenured 

authors (38% versus 9%). Surprisingly, we observe stronger evidence of p-hacking in the subsample 

of articles written by authors affiliated with (or graduated as PhD from) higher ranking institutions. 

While it is hard to pin down the exact reason, a plausible explanation is that more pressure to publish 

in higher ranked institutions enhances the incentive to conduct p-hacking. Alternative, one could also 

argue that researchers from more prestigious institutions are less likely to be challenged by reviewers 

and other readers.  

[Insert Table 4 about Here] 

Turning to the costs of p-hacking, we document stronger evidence of p-hacking when it is less 

costly for researchers. Specifically, the residual for the subsample of articles without female author is 

almost twice the magnitude of the residual among articles with at least one female author, consistent 

with males having higher risk tolerance, and are thus more aggressive in p-hacking; further, researchers 

tend to be more aggressive in p-hacking when they work alone, as indicated by the much larger residual 

at 0.05 for sole-authored papers than articles with more than one authors (36% versus 14%). Lastly, as 

for other article characteristics, more participants in experiments is associated with a higher residual at 

0.05, this suggests that p-hacking may result in a larger sample; however, after splitting articles that 

only report two-tailed p-values and those that do not, we find quite similar residuals between the two 

groups.  

Taken together, we identify five factors that seem to be able to predict the extent of p-hacking, 

they are: authors’ tenure, gender, number of author, authors’ affiliated school ranking, and number of 

participants in the experiments of an articles. These cross-sectional variations in the extent of p-hacking 
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is consistent with the predictions from our cost-benefit framework: we will see more p-hacking when 

its benefits outweigh its costs. Consequently, the subsample analyses provide further support to our 

argument that the residuals around significance threshold is due to p-hacking. However, our results in 

this section is purely based on univariate analysis, and the results obtained can be relational instead of 

causal. It is possible that those factors are correlated with each other or other omitted variables. Our 

results thus need to be interpreted with these limitations in mind. Nonetheless, while some alternative 

stories may explain part of our results, the collection of the cross-sectional evidence is most consistent 

with our cost-benefit framework of p-hacking. 

6. Additional tests 

6.1. P-hacking and future citations 

If p-hacking increases the chance of publication, an interesting question is whether it is related 

to the citations an article receives in the future. A priori, it is unclear how the two will be correlated. 

On one hand, to the extent that editors prefer articles with results that are more statistically significant 

because such articles attract more citations in the future, we may expect p-hacking increase the number 

of citations by inflating the level of statistical significance. On the other hand, if p-hacking increases 

the chance of false positive findings, these findings are less likely to hold in the future (Open Science 

Collaboration, 2015). Subsequent studies that build on these findings thus have lower chance to bear 

fruit and to publish. Hence, findings coming from p-hacking or data-mining may generate fewer 

citations than other robust findings. 

We use the citation counts from Google Scholar to test how the extent of p-hacking is related 

to the number of future citations. To control for the truncation bias that articles published earlier have 

longer time to accumulate citations, in each year, we split all articles published during that year into 

two groups based on that year’s median number of citations. The final high (low) citations group 

include all the high (low) citations groups from every year. We then check whether more cited articles 
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exhibit stronger or weaker evidence of p-hacking by plotting the distribution of p-values.21  The 

histograms in Figure 6 deliver two findings. First, not surprisingly, more cited articles have more 

significant results, as indicated by the higher frequency of p-values near zero in the high citations group 

than that in low citations group. Second, more cited articles also have a relatively higher proportion of 

“just” significant results: the ratio of the residual frequency to observed frequency in Panel B (24%) is 

almost twice the ratio in Panel A (13%). Similar results are obtained if we use the citation counts from 

Web of Science instead of Google Scholar (Panel I in Table 4). Taken together, these results are 

consistent with the argument from prior works that more significant results attract more readers and 

citations (e.g., Fanelli, 2012), though some of the results may be due to p-hacking.  

6.2. Extent of p-hacking for main results 

If researchers use p-hacking to obtain the most significant results, then they should have the 

strongest incentive to do so for their key results in the article. To test this conjecture, we slice the p-

values in our sample as follows. For an article, we rank its p-values by the sequence they appeared in 

the text, and then group p-values appeared in the first half of the whole sequence as p-values for the 

key results. The rationale is that generally speaking, the key results of an article are likely to be 

mentioned earlier rather than later.  

Results in Figure 7 demonstrate that the kink in the p-value histogram at 0.05 in our full sample 

is almost entirely driven by the subsample of p-values mentioned in the earlier part of each article. 

Moreover, in Panel A, the frequency of p-values at 0.01 is almost twice the frequency of p-value = 

0.02, which is even lower than the frequency of 0.05. The potential explanation is that researchers have 

higher standard of significance level for their main results: many p-values equal to 0.02 are inflated to 

0.01.  In contrast, in Panel B, where the p-values are mentioned in the later part of each article, we 

                                                           
21 Ideally, to test how p-hacking may affect future citations, one needs to construct an article-level measure of the extent of 

p-hacking, and use this measure to forecast future citations. However, due to the limited number of p-values a typical article 

reports (10 in our sample), article-level measure is hard to construct. That said, the method we adopt is still legitimate, 

because future citations are usually generated years after the writing of an article, it is implausible that the causal relation 

between p-hacking and future citations runs from the latter to the former.  
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observe weaker evidence of kink at 0.05. The results from this exercise thus provide strong evidence 

of p-hacking.   

[Insert Figure 4 about here] 

6.3. P-hacking among archival accounting research  

We have documented the existence of p-hacking among experimental accounting studies.  

Potential readers of our paper will naturally concern that p-hacking also exists among archival 

accounting research, given that archival accounting researchers also have flexibility over data analyses 

and strong incentive to generate top journal publications. To answer this question, we randomly select 

260 articles from each of the top three accounting journals TAR, JAR, and JAE (Journal of Accounting 

and Economics). Initially, we attempt to collect p-values from the text of these 780 articles using the 

same Python script as we used for experimental studies. However, we are able to scrape only 232 p-

values from 76 articles, because unlike experimental studies, archival studies generally do not mention 

p-values within text. The sample is too small to conduct any meaningful analysis about the existence 

of p-hacking among those articles. We then identify 163 articles that report p-values in tables of 

regression analyses among the 260 articles. For a regression table, we record p-values appeared in the 

first three rows except those for intercepts. Arguably, p-values appeared in the upper part of tables are 

more likely to be the test statistics for key results. This method yields 4,767 p-values.  

[Insert Figure 6 about here] 

We find that the distribution of p-values is extremely uneven and right-skewed: there are 1,680 

p-values reported as zero. Such a high frequency of zero would dwarf the heights of bins for other p-

values, we therefore exclude these p-values. The histogram for the rest p-values is presented in Figure 

8. Compared with Figure 1, the distribution of p-values from archival accounting do not show a 

discontinuity at 0.05. We can think of two explanations the difference. First, archival studies is less 

prone to p-hacking, probably due to the public availability of databases many archival researchers rely 

on, which makes replication easier and provides monitoring mechanism for p-hacking. Alternatively, 
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as archival researchers usually use much larger samples than experimentalists, they have much higher 

statistical power. It is possible that the archival researchers aim for p ≤ 0.01 when doing p-hacking. 

The high frequency of p-values near zero is probably the result of this. In sum, though we do not 

observe a sharp discontinuity at 0.05 on the histogram of p-values from archival accounting articles, 

we still cannot rule out the possibility that those studies aim for the highest statistical significance level 

(p-values near zero) while doing p-hacking. 

7. Potential remedies to guard against p-hacking 

While we have provided evidence of p-hacking among experimental accounting studies, in this 

section, we further discuss potential remedies that may help to guard against p-hacking. As mentioned 

in the introduction, p-hacking can hinder academic progress because it increase the chance of false 

positive findings, which is largely driven by the problem of Multiple Hypotheses Testing (MHT) 

accompanied by insufficient disclosure on research agenda. We first introduce three widely used MHT 

adjustment methods developed to limit the number of false positive discoveries, with discussions on 

the implementation of the methods in experimental accounting research; we then illustrate the 

application of the methods using simulated experimental data. We also consider the Bayesian approach 

and provide some guidelines on improving research transparency. 

7.1. Multiple hypotheses testing  

 Multiple Testing is common among many disciplines. It can be due to multiplicity in data, 

hypothesis, or analyses methods (Bender and Lange, 2001). For instance, data multiplicity can occurs 

when researchers choose among several samples to test the same set of hypotheses; hypothesis 

multiplicity arises when researchers investigate the effect of a treatment (or manipulation) on several 

outcome variables. Multiple Testing could be problematic because it increases Type I errors. This can 

be illustrated as follows. If a single hypothesis testing is conducted at a significance level α, the 

probability of not rejecting a true null hypothesis is by definition (1-α). Now consider conducting M 

independent tests, the probability of not rejecting all true null hypotheses is (1 −  α) 𝑀, therefore, the 
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probability of rejecting at least one true null hypothesis become 1 - (1 −  α) 𝑀, which is also called 

family-wise error rate (FWER) or experiment-wise error rate (EER). Formally, it is defined as:  

FWER=Prob(⋃ {reject Hm0 when it is trueM
m=1 }), 

where m indexes the hypotheses tested, and H𝑚0 is the null for hypothesis m. It is easy to see that 

FWER is an increasing function of M. When multiple tests are conducted, it therefore becomes 

necessary to control the FWER at a reasonably low level. The statistical literature has developed ways 

to control for FWER, we describe some of the most widely used methods and their implementations.  

The first method we consider is Bonferroni method, which offers an intuitive procedure to 

control for FWER. Specifically, suppose we need a FWER lower than α, which is also the false positive 

rate for each individual test among the M tests. However, according to Bonferroni’ inequality, we will 

have 

𝐹𝑊𝐸𝑅 ≤ ∑ 𝑃𝑟𝑜𝑏(reject H𝑖0 when it is true) =  α × 𝑀
𝑀
𝑚=1 , 

To guarantee a FWER lower than α, the Bonferroni method sets the false positive rate for each 

individual test as 
α

𝑀
, then 

𝐹𝑊𝐸𝑅 ≤  
𝛼

𝑀
×𝑀 = 𝛼, 

consequently, under the Bonferroni method, an investigator compares the p-values of all tests to a 

single significance threshold 𝛼/M, and rejects a null hypothesis 𝐻𝑚 if 𝑝𝑚 ≤ 𝛼/M, where m indexes 

each test. By doing so, she controls for FWER at the level α.  

  The Bonferroni method has been used in experimental accounting studies since 1980s, but its 

application is quite limited.22 However, in situations where the chances of false positives are high, 

Bonferroni method offers a simple adjustment that offers protection against conclusions that may be 

driven by chance. To be more specific, if the key hypothesis in an experimental study is examined by 

                                                           
22 See Margheim (1986), Peecher (1996), and Libby and Brown (2013) for examples of the application of Bonferroni 

method. 
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means of multiple comparisons, then Bonferroni adjustment is necessary. For example, it is not 

uncommon for experimental studies to compare the mean of a control group with each of mean of four 

treatment groups, without specifying clearly the ex ante priorities among the comparison. In this 

specific case, the Bonferroni-adjusted p-values for significance at the 5% level should be 1.25% 

(5%÷4). 

While widely known for its simplicity, Bonferroni method also lacks power when the number 

of tests are high, as for a large number of tests, the critical p-value will be extremely small. In addition, 

it treats each test as independent from each other. In practice, however, the test statistics from a family 

of tests are almost always correlated, and Bonferroni methods will over-correct the FWER. We 

introduce our second method to account for the interdependence of test statistics.  

 The second method we consider is bootstrapping adjusted p-values, which is a resample-based 

method designed to control for the FWER from multiple testing (Westfall and Young, 1993). This 

method is implemented as follows. Suppose there are M tests, each with an actual p-value of 𝑝𝑚, where 

1≤m≤M. The first step is to bootstrap the sample data by sampling observations with replacement to 

create a pseudo-sample with same sample size as the original sample; second, for the M tests, calculate 

their respective p-values {𝑝1
𝑏, 𝑝2

𝑏 ,⋯ 𝑝𝑀
𝑏 } using the pseudo-sample, and get the minimum value 𝑝𝑚𝑖𝑛

𝑏 , 

where superscript b denotes that these p-values come from the bootstrap; third, for any test m, create a 

dummy variables, 𝐶𝑚
𝑏 , which equals to one if 𝑝𝑚𝑖𝑛

𝑏 ≤ 𝑝𝑚  and zero otherwise (so we will have M 

counters for each bootstrapping). Lastly, repeat the above steps for B times, and the adjusted p-value 

for an actual p-value is calculated as 
∑ 𝐶𝑚

𝑏𝐵
𝑏=1

𝐵
, which is the ratio of times when the minimum p-value is 

lower than or equal to the actual p-value over the total times of bootstrapping. The adjusted p-values 

are compared against the 5% significance threshold. In our setting, we set B equals to 500.  

As Westfall, Young, and Wright (1993) point out, the adjusted p-value measures how extreme 

a given p-value is relative to the distribution of the most extreme p-values from bootstrapping. 

Compared with the Bonferroni method, the biggest advantage of the bootstrapping adjusted p-values 
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is that it takes into account the dependence structure among individual test statistic, thereby improving 

the power of the multiple testing procedure. This method is thus particularly useful when the number 

of tests in an experiment is high, as in such cases the Bonferroni method will give extremely small 

critical p-values. For example, an investigator might examine the effect of two treatments on five 

outcome variables, generating a total of then hypotheses.23  

The last method we consider to adjust for multiple comparison is controlling for False 

Discovery Ratio (FDR), which controls for the “proportion”, rather than the “number”, of false 

rejections. This is particularly important when we conduct a large number of tests and are thus more 

willing to tolerate a higher number of false rejections (Different from Bonferroni method that controls 

for the FWER, the probability of rejecting even one of the true null hypotheses). We adopt the method 

in Benjamini and Hochberg (1995) to control for the False Discovery Ratio δ at the 5% level. 

Specifically, we first rank a family of M p-values from minimum to maximum, and define: 𝑗∗ =

max {𝑗: 𝑝𝑗 ≤
𝑗×δ

𝑀
}, 𝑗∗indexes the largest p-value that satisfies this inequality; Next, we reject all 𝐻𝑖, i = 

1, 2, …, 𝑗∗. It is helpful to consider an example. If M = 5, and the five p-values are 0.01, 0.02, 0.03, 

0.05, and 0.06. In this example, 𝑗∗ = 3 (
3×0.05

5
= 0.03). Therefore, despite the fourth hypothesis has a p-

value of 0.05, it is still higher than 0.04 (
4×0.05

5
), we thus only reject the first three hypotheses. 

Benjamini and Hochberg (1995) theoretically show that this procedure controls for FDR at δ for 

independent test statistics.  

7.2. Simulations  

 To demonstrate the application of the multiple test procedures outlined above, we follow 

Simmons, Nelson, and Simonsohn (2011) to generate computer simulated experimental data, and show 

two sets of results: 1) how the rejection rates change as the number of tests increases; 2) the rejection 

rates after adjusting for multiplicity. Each “experiment” is a 2 × 2 design with 20 “participants” per 

                                                           
23 Again, if it is possible to clearly specify the hypotheses tested ex ante and their relative priorities, then multiplicity 

problem is greatly mitigated.  
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cell, and an outcome variable drawn from standard normal distribution. Since we are interested in the 

magnitude of false positive rates, “participants” are randomly assigned to each of the 4 cells to 

construct a zero treatment effect. We label this design the baseline case.  

We then add three discretionary choices on top of the baseline case to mimic the process of p-

hacking, they are: choosing among different dependent variables, choosing the sample size, and using 

covariates.24 A researcher can choose any combination of the three “degree of freedom” to search for 

the one that gives highest level of statistical significance. For instance, one can choose to use the first 

dependent variable, the second, or the average of the two, and whether to add another experiment 

session or not. There are 12 unique combinations of all the choices available; in each experiment, we 

thus run 12 Analyses of Variance (ANOVAs) to exhaust all possible combinations of the choices. To 

simplify the analysis, suppose we are only interested in finding statistically significant interaction 

effect of any pair of independent variables. We then perform 1,000 simulated experiments, and count 

─ for each combination ─ how often the minimum p-value among all the interaction effects is below 

0.05. The purpose of the simulation is to show that, if one looks into a given data set long enough and 

hard enough, it will be much easier to find statistical significant results by chance (i.e., spurious 

findings).  

Column (1) of Table 5 reports each situation and its corresponding false positive rates. In the 

baseline case, the false positive rates is 3.8%, which is a bit lower than 5%. In situation 2, a researcher 

has the flexibility to analyze one of two dependent variable (correlation coefficient 0.5), or their mean, 

and choose whichever gives the highest statistical significance. This simple flexibility doubles the 

chance of obtaining a false positive finding. As we move to Situation 7 in the last row, where the 

researcher combines all choices, the rejection rate increases to 34.3%. This implies the researcher can 

                                                           
24 We choose these three researchers’ “degree of freedom” because these are the commonly made decisions while a 

researcher is collecting and analyzing data, and also because they are easily implementable. We can add more choices, but 

the fundamental takeaway from the exercise will be the same. 
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find at least one statistical significance in every three simulations. Because we only consider three 

choices, these estimates may still be conservative.  

Column (2) to (4) of Table 5 provide the rejection rates under the multiple testing procedures 

introduced. The Bonferroni method is the simplest but also the most conservative one, as evidenced 

by the low rejection rates compared with other methods. Taking Situation 1 as an example, under the 

traditional single hypothesis testing, there are 76 times among the 1000 simulations with at least one 

significant interaction effects; under the Bonferroni method, the number drops to 27. Turning to 

Column (3), the rejection rates across all situations under the Bootstrapping adjusted p-values are in 

general higher than the rejection rates under Bonferroni method, especially for situations with higher 

number of tests, suggesting that taking into account the dependence among test statistics indeed gives 

less conservative critical p-values. The rejection rates under Bootstrap adjusted p-values are also close 

to the 5% significance level. Column (4) reports the result of BH method. By tolerating higher number 

of false rejections when the total number of tests is high, BH also method yields a higher rejection rate 

than the Bonferroni method. 

 To summarize, we find that flexibility in data collection and analyses allow researchers to easily 

report statistical significant findings, and after accounting for multiple testing, significant findings are 

much less frequent, and the rejection rates move towards 5%. Given that experimental accounting 

studies in general rely on small samples with low statistical power (higher p-values), we recommend 

the use of Bootstrap adjusted p-value and the BH method, which are more powerful than Bonferroni 

method. However, one important limitation in implementing multiple testing procedures is that, in 

reality, we can only observe those tests that are disclosed by researchers, and the reported tests may 

only be a subgroup of all performed tests. Hence, the use of multiple tests procedure cannot fully 

protect against the bias caused by p-hacking.  

[Insert Table 5 about here] 
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7.3. The Bayesian approach 

 In our simulation, the treatment effect is designed to be zero and has no theoretical underpins. 

Consequently, the prior probability of running into a true discovery should also be low, i.e., the prior 

odds ratio between the null hypothesis and the alternative hypotheses will be high. However, the 

computation of p-value does not incorporate this prior information. Recall that the p-value indicates 

p(D|H0), which the probability of observing the result or more extreme results given that the null 

hypothesis being true, not p(H0|D), which is the probability of null being true given the data. If, 

however, we can incorporate this prior belief into our hypotheses testing, then we can potentially have 

a method to help guard against extreme findings that result from p-hacking. This is the basic logic of 

Bayesian approach.  

 Essentially, the Bayesian approach assess the viability of hypothesis based on a posterior odds 

ratio between the null hypothesis and the alternative hypotheses, given data likelihood ratio and prior 

odds ratio. According to the Bayesian theorem, the posterior odds ratio is defined as: 

f(θ0|data)

f(alternative|data)⏟        
Posterior odds ratio

=
f(data|θ0)

∫ (data|θ)πA(θ)dθ⏟        
Bayesian factor 

×
π0

π1⏟
prior odds ratio

, 

where f(x|y) is the probability density function of 𝑥 conditional on y, πA(θ) is the probability density 

under the alternative hypotheses, and ∫ (data|θ )πA(θ)dθ is thus the data likelihood under the alternative 

hypotheses. The odds ratio between the data likelihood under the null and the alternative, 
f(data|θ0)

∫ (data|θ)πA(θ)dθ
, 

is also called the Bayesian factor. After multiplying the prior odds ratio by the Bayesian factor, we 

have the posterior odds ratio on the left-hand-side. Economically, the Bayesian factor measures the 

extent to which our prior belief are changed after observing the data, with smaller Bayesian factor 

provides stronger evidence against the null. 

 As can be seen from the above equation, calculating the Bayesian factor requires knowledge 

on the probability density of the alternative hypotheses, i.e., 𝜋𝐴(𝜃). To calculate 𝜋𝐴(𝜃), we need to 

specify priors on all possible alternative hypotheses, and for each of these hypothesis, we calculate the 
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data likelihood under the null. However, in financial and accounting studies, we usually do not have 

well-specified alternative hypotheses, this makes it is infeasible to calculate the Bayesian factor. 

Fortunately, there is one type of Bayesian factor that does not rely on the prior specification of 

alternatives: the minimum Bayesian factor (MBF). Harvey (2017) provides an excellent description on 

MBF, which we draw upon here.  

 Specifically, MBF is calculated for the case when a researcher focuses on a specific alternative 

hypothesis that turns out to be the maximum likelihood estimate of the data, i.e., the hypothesis that is 

most supported by the data. In other words, the MBF is calculated under the situation that what we 

believe (the alternative hypotheses) coincides with what we see (the data), it therefore provides the 

strongest evidence against the null hypothesis. In this regard, the MBF is particularly suitable for 

experimental accounting studies, which usually develop directional hypotheses, implying that prior 

density of the alternative hypotheses is likely to be concentrated in one side of the null hypothesis; 

therefore, in using MBF, we give an alternative hypothesis the best shot by concentrating the prior 

density at the alternative rather than the null. Moreover, MBF is easy to calculate under the standard 

normal distribution assumption: 

MBF=e
-
z2

2 , 

where 𝑒 is the natural exponent, and z is the corresponding z-value from the null effect. For example, 

if p-value = 0.05 (two-tailed), then 𝑧 =  ±1.96, and MBF = 0.15, or 
1

6.8
. As a result, the observed value 

supports the alternative hypothesis 6.8 times as strongly as it does the null. Once MBF is obtained, we 

can calculate the Bayesianized p-value as follows: 

Bayesianized p-value = 
posterior odds ratio

1+posterior odds ratio
=

MBF*prior odds ratio

1+MBF*prior odds ratio
. 

 Continuing the above numerical example, if we believe that ex ante, the null hypothesis and 

the alternative is equally likely to be true (i.e., prior odds ratio = 1), then the Bayesianized p-value is 

0.13, which indicates the chance of the null being true is 13%. If instead, the prior odds ratio = 0.50 
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(i.e., there is modest chance in favor of the alternative), then the Bayesianized p-value becomes only 

0.07. In both cases, the Bayesianized p-values are higher than the conventional p-value 0.05. However, 

the Bayesianized p-values carries a fundamentally different interpretation: it is a statement about the 

viability of the null hypothesis, as opposed to the likelihood of observing the data assuming null being 

true.  

 How can the Bayesian approach be helpful in experimental accounting studies? Bloomfield, 

Rennekamp, and Steenhoven (2018) mention that Bayesian approach can be used as a complement to 

the Null Hypothesis Significance Testing (NHST). We follow their line of reasoning and offer some 

recommendations in here. Specifically, experimental researchers can take their priors into account, and 

present Bayesianized p-values alongside the usual test statistics. Given the relative high cost (e.g., 

recruiting and rewarding participants) of conducting experimental studies and small sample size, 

experimentalists generally do not commence data collection unless they believe that their underlying 

theories are highly plausible. This suggests that experimental accounting researchers generally have a 

low prior odds ratio (i.e., the alternative is more likely to be true than the null). The Bayesianized 

approach can be particularly valuable because it offers a convenient way for researchers to incorporate 

their prior beliefs, which is unfeasible in NHST. In addition, the choice of prior odds ratio is transparent 

and less subject to manipulations.25 Researchers can also choose to report Bayesianized p-values under 

multiple prior odds ratios, and thus readers with different priors can make their own assessments about 

the viability of the hypotheses given the test results. 

7.4. Disclosure-based solution 

 Since p-hacking relies on exploiting undisclosed flexibility in data collection and analyses, 

another natural solution is to require researchers to make reasonably transparent disclosures on their 

research agendas and methodologies. Such disclosures are likely to curb researchers’ ex ante incentives 

                                                           
25 One might think the choice of prior odds ratio is subjective. However, writing his presidential address, Harvey (2017) 

emphasize the point from Fisher (1925): “There is no ‘objective’ evaluation of hypotheses”. Researchers from various 

disciplines relies too much on p-values to assess the viability of hypotheses, while ignoring the fact that p-value was not 

designed for this type of interpretation.   
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to conduct p-hacking, because once a carefully planned research agenda is disclosed, researchers have 

limited room for cherry-picking afterwards. Consequently, disclosure-based solution has been widely 

discussed and adopted. For example, top journals in many disciplines usually require researchers to 

disclose their data or code.26  

Of course, greater disclosure and transparency are not without costs. For instance, Bloomfield, 

Rennekamp, and Steenhoven (2018) point out that while JAR’s a Registration-based Editorial Process 

can potentially enhance reproducibility by mitigating questionable practices, it may also shut down the 

channel for authors to learn from their data and refine research agendas.27 In what follows, we highlight 

three type of disclosures that journals can require from authors to mitigate p-hacking while imposing 

minimum costs on authors and reviewers. This list of disclosures is not intended to be exhaustive; 

rather, it is based on some of the questionable practices that are frequently cited as enabler of p-hacking. 

1) Specifying sample collection stopping rule. Simmons et al. (2011), and Button et al. (2013) 

cite arbitrary stopping rule as a common practice among researchers to inflate results. As such, if 

journals aim to improve transparency in author reporting and documentation, a critical dimension of 

transparency is sample selection procedure. We thus recommend that journals’ disclosure policy can 

include guidelines that encourage authors to decide their sample selection stopping rule ex ante. For 

example, authors can state that “we decide to recruit 120 MBA participants for our experiment”, or 

“we attempt to conduct a pilot study with 60 participants, and include the pilot sample as part of the 

experiment proper”. The stopping rules can be study-specific, but once chosen, journals and reviewers 

should make sure that authors stick to the rules.  

                                                           
26 For a partial list of top journals in social science that adopted similar policies, please see: 

https://web.stanford.edu/~cy10/public/data/Data_Availability_Policies.pdf.  
27 Journal of Accounting Research (JAR) experimented a Registration-based Editorial Process (REP) in 2017. Under REP, 

authors first submit their proposals containing data collection and analyses to JAR. After going through the process of peer 

review and revisions, editors and reviewers grant in-principal publication to proposals that meet publication standard, 

therefore guaranteeing publication regardless of the final results obtained under the agenda. The purpose of REP, according 

to Professor Leuz, is to enhance reproducibility of findings and encourage academic risk-taking (Wiley, 2018).  

https://web.stanford.edu/~cy10/public/data/Data_Availability_Policies.pdf


37 
 

2) Report all the variables collected. A transparent disclosure of outcome variables and 

conditions constructed in an experiment allows readers to assess the potential number of tests 

conducted by authors, and interpret their p-values in context.28 Consequently, journals’ disclosure 

policy should put great emphasize on requiring authors to list all variables collected in a study. 

Moreover, the survey conducted by Bloomfield, Rennekamp, and Steenhoven (2018) also show that 

researchers believe that “choosing analyses to highlight and report” (including choosing different 

variables) is most likely to “overstate results without improve informativeness”. This evidence 

suggests that journals’ effort to address this issue are likely to meet researchers’ cooperation. 

3) Reporting p-values. Authors should keep consistency in the choice between reporting one-

tailed or two-tailed p-values. The articles in our sample can generally choose to report one-tailed p-

values if the corresponding hypotheses are directional. However, it is not uncommon to find articles 

that report one-tailed p-values in the main tests, but two-tailed p-values in follow-up tests. Such 

discretional use of tail choice is indicative of cherry-picking, especially in cases where the p-values 

would be higher than the significance threshold if two-tailed p-values are used.  

In addition, journals should ensure that the underlying statistics of p-values (F- or t-stat, and 

degree of freedom) be available, either in tables or in the text where a p-value is mentioned. This is the 

reporting policy of The Accounting Review. However, in our sample, we still find articles that do not 

report degree of freedom in neither tables nor text, especially when the results are not reported in the 

form of ANOVA tables. This is potentially problematic, as authors may have incentive to misstate p-

values when readers cannot easily verify the accuracy of p-values.29  

To summarize, we discussed three type of researcher’ discretions that could be used to overstate 

the importance of results, and suggest journals that are aiming to improve transparency emphasize 

                                                           
28 For example, if authors use three measures to capture the same outcome in an experiment and only report the one that 

generates strongest results, readers will have no way to assess the multiplicity of the test because the true number of tests 

is unknown. 
29 When we attempt to calculate the exact values for p-values reported as “p <”, we find several cases that authors overstate 

their p-values. For example, when authors report “p < 0.10”, the true value is p = 0.12 or 0.14. Had the articles not provide 

the underlying statistics such as t-statistics or F-statistics, we would not be able to discover these overstatements. 
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authors’ disclosure from these dimensions, which we believe can greatly enhance transparency without 

imposing much costs on both authors and reviewers. Notably, by no means are the three type of 

discretions a complete list of researchers’ “degree of freedom”. We hope the discussion here can further 

stimulate the conversation on improving transparency and reproducibility in experimental accounting 

research. 

8. Conclusion 

We uncover a discontinuity at 0.05 in the pooled cross-sectional distribution of p-values from 

experimental accounting studies, and we interpret the discontinuity as a result of researchers’ practice 

of p-hacking to generate significant results. The extent of p-hacking is more pronounced when authors 

face pressure of tenure, among male researchers, and when a researcher works alone. Furthermore, 

researchers graduated from higher-ranking schools seem to be more aggressive in p-hacking. Papers 

that exhibit greater extent of p-hacking also attract more citations after publication. 

The results in this paper may underestimate the true extent of p-hacking due to the following 

reasons. First, our sample could be biased because we use p-values mentioned in the text of articles, 

and the decision to mention a p-value in text is made by researchers. Arguably, researchers would like 

to discuss the most significant results in the paper, and are reluctant to emphasize a p-value that is just 

above the 0.05 threshold. Second, we only use articles published from three of the most prestigious 

accounting journals, it is reasonable to suspect that articles published on lower-tier journals are also 

subject to similar, or even higher extent of p-hacking than what we documented here. Lastly, we focus 

only on discontinuity at 0.05, it is possible that some researchers aim for higher p-value targets such 

as 0.04, 0.03 or even 0.01 to avoid being too close to the 0.05 red line. However, such practice is much 

harder to detect because aiming for higher significance level will cause a more right-skewed p-value 

distribution, which can also be explained by publication bias. 

We also propose several methods to guard against p-hacking. Specifically, we introduce several 

multiple testing procedure to control for false positive findings due to conscious or unconscious p-
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hacking. Moreover, we propose a Bayesian approach for researchers to account for their prior beliefs 

on the likelihood of their theories. Lastly, we discuss some guidelines on enhancing disclosure with 

minimum burden on both authors and reviewers. Given the increasing attention on the prevalence and 

potential consequence of p-hacking in experimental accounting research, we believe it is the right time 

to discuss potential remedies, and with the cooperation among journals, reviewers, and authors, 

experimental accounting research will continue to produce high-quality works that boost scientific 

progress in accounting. 
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Panel A: Raw distribution of all p-values 

 

 
 

Panel B: Raw distribution weighted by article’s number of p-values 

 

 

Figure 1. Empirical distribution of all p-values from 1990 to 2016.  

Bin width is 0.001. The bold bar indicates frequency of p-values ϵ (0.049, 0.05]. In Panel B, the 

distribution uses the inverse of the number of p-values collected to weight observations. 
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Panel A: Only including p-values reported with two decimal places 

 

 
 

Panel B: Rounding all p-values to two decimal places 

 

 

Figure 2. Isolating p-values reported with two decimal places. 

In Panel A, we use only p-values reported with two decimal places; in Panel B we round all p-

values and use the rounded values to generate the histogram.  
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Panel A: Only including p-values reported with two decimal places 

 

 
 

Panel B: Rounding all p-values to two decimal places 

 

 

Figure 3. Fitting histogram of p-values to exponential distribution 

Red line represents the fitted exponential curve that minimize the squared fitting errors; 

grey triangular represents the frequency of each observed p-value on x-axis. The 

exponential function in Panel A and B are 𝑦 = 205.49𝑒−17.65𝑥  and 𝑦 = 458.464𝑒−21.96𝑥 , 

respectively. 
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Panel A: The distribution of vague p-values 

 

 
 

Panel B: The distribution of 104 exact p-values calculated from p < 0.05 or p < 0.10 

 

 

Figure 4. The distribution of vague p-values 

The histogram in  Panel A shows the distribution of 2,362 p-values reported as “p <”; the histogram 

in Panel B shows the distribution of 104 exact p-values we are able to compute for the 396 p-values 

reported as p < 0.05 or p < 0.10, which are indicated with the bold bars. 
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Panel A: Adding the estimated distribution of p < 0.05 or p < 0.10 to main sample 

 
 

Panel B: Adding the estimated distribution of all vague p-value to main sample 

  

 

Figure 5. Including vague p-values 

In Panel A, we combine the empirically estimated distribution of 396 vague p-values (p < 0.05, 

0.10) with the distribution of exact p-values; in Panel B we further include other vague p-values 

by assuming a uniform distribution for p < x between (x-0.01) and x, where x denotes 0.02,0.03, …, 

and 0.15 (except 0.05 and 0.10). 
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Panel A: Articles in low citation group 

 

 
 

Panel B: Articles in high citation group 

 

 

Figure 6. P-hacking and citations 

In each year, we split articles into high and low citation groups based on the median 

number of citations of all articles published in that year. The final low (high) citation group 

consists of low (high) citation groups from every year. 
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Panel A: P-values appeared in the earlier part of an article 

 

 
 

Panel B: P-values appeared in the later part of an article 

 

 

Figure 7. Do main results of an article show higher degree of p-hacking?   

For each article, we sort all of its p-values by the sequences they appear in that article, then we 

identify the median value of the sequential number. Panel A contains those p-values that appear 

before each articles’ respective median sequential number, Panel B contains the rest. 
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Figure 8. Histogram of p-values from archival accounting studies. 

The figure presents the histogram of 3,087 p-values manually collected from 163 archival 

accounting studies. The bin width is 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1
0
0

2
0
0

3
0
0

4
0
0

F
re

q
u
e

n
c
y

0 .05 .1 .15



51 
 

Table 1. Summary statistics at the article-level 

This table displays summary statistics for author and paper characteristics based on a sample of 240 experimental 

articles published in Top 3 accounting journals between 1990 and 2016. N_Authors is the number of listed 

author(s) for a paper. Female is a dummy variable that equals to one if the listed author(s) contain at least one 

female, and zero otherwise. N_Participants is the number of subjects participated in a paper’s experiments. N_p-

values is the total number of p-values scraped from a paper. Two_tailed is a dummy that equals to one if an 

article only report two-tailed p-values. Sole is a dummy variable that equals to one if a paper contain only one 

author, and zero otherwise. Tenured is the fraction of authors that are tenured among all authors of a paper. 

School Ranking is the mean ranking of all authors’ affiliated schools for a paper. PhD School Ranking is the 

mean ranking of authors’ PhD alma mater for a paper. Experience is the average number of years passed after 

an articles’ authors obtained their PhD degree, calculated at the publication year of that article. The subsample 

for JAE are not tabulated separately because there are only three articles from JAE in our sample. 

 
 N Mean SD p25 p50 p75 

Full sample       

N_Authors 240 2.171 0.937 1.000 2.000 3.000 

Female 240 0.500 0.501 0.000 0.500 1.000 

N_Participants 233 116.940 87.926 65.000 97.000 138.000 

N_p-values 240 17.992 10.589 10.000 16.000 23.000 

Two-tailed 239 0.343 0.476 0.000 0.000 1.000 

Sole 240 0.287 0.454 0.000 0.000 1.000 

Tenured 235 0.420 0.373 0.000 0.500 0.667 

School Ranking 240 45.027 30.504 19.000 40.000 67.167 

PhD School Ranking 229 29.361 21.739 15.000 22.500 39.000 

Experience 230 9.173 6.000 4.000 8.000 12.500 

JAR       

N_Authors 77 2.156 0.875 2.000 2.000 3.000 

Female 77 0.455 0.501 0.000 0.000 1.000 

N_Participants 74 119.486 57.891 78.000 106.000 145.000 

N_p-values 77 18.364 11.397 10.000 17.000 24.000 

Two-tailed 77 0.416 0.496 0.000 0.000 1.000 

Sole 77 0.247 0.434 0.000 0.000 0.000 

Tenured 75 0.441 0.356 0.000 0.500 0.667 

School Ranking 77 38.315 27.507 17.500 33.000 49.000 

PhD School Ranking 75 26.218 20.089 13.000 20.000 34.000 

Experience 75 9.856 6.459 4.000 9.000 14.000 

TAR       

N_Authors 160 2.188 0.972 1.000 2.000 3.000 

Female 160 0.525 0.501 0.000 1.000 1.000 

N_Participants 156 117.205 99.251 63.000 91.000 130.500 

N_p-values 160 17.962 10.183 11.000 16.000 23.000 

Two-tailed 159 0.308 0.463 0.000 0.000 1.000 

Sole 160 0.306 0.462 0.000 0.000 1.000 

Tenured 157 0.411 0.384 0.000 0.500 0.667 

School Ranking 160 48.433 31.599 20.250 48.250 70.250 

PhD School Ranking 151 31.016 22.552 15.500 25.000 43.000 

Experience 152 8.850 5.753 4.000 7.583 12.333 
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Table 2. Deviations from the exponential distribution 
This Table reports the deviations of the frequency of each p-values with two decimal places (0.01, 0.02... 0.15) 

from its forecasted frequency determined by the exponential fitting. In Panel A, we only use p-values reported 

with two decimal places; in Panel B we round p-values to two decimal places and use all p-values in our sample. 

In Column (1), Freq is the observed frequency for each p-value; in Column (2), Residual Freq is the observed 

frequency minuses the expected frequency of each p-value based on exponential fitting. The last column 

measures the ratio of forecast residual in (2) to observed frequency in (1).  

 

p-value 
(1)  

Freq 

(2)  

Residual Freq 

(3) 

(Residual Freq)/ Freq 

Panel A: Using p-values reported with two-decimal places 

0.01 187 8.229 4.40% 

0.02 143 -7.660 -5.36% 

0.03 111 -15.969 -14.39% 

0.04 88 -19.004 -21.60% 

0.05 122 31.822 26.08% 

0.06 60 -15.998 -26.66% 

0.07 61 -3.047 -5.00% 

0.08 58 4.024 6.94% 

0.09 54 8.511 15.76% 

0.10 44 5.664 12.87% 

0.11 20 -12.308 -61.54% 

0.12 20 -7.227 -36.14% 

0.13 17 -5.946 -34.98% 

0.14 21 1.662 7.91% 

0.15 12 -4.297 -35.81% 

Panel B: Rounding up all p-values to two decimal places 

0 447 -17.143 -3.84% 

0.01 432 54.226 12.55% 

0.02 293 -14.476 -4.94% 

0.03 192 -58.260 -30.34% 

0.04 202 -1.691 -0.84% 

0.05 214 48.213 22.53% 

0.06 121 -13.937 -11.52% 

0.07 112 2.172 1.94% 

0.08 88 -1.390 -1.58% 

0.09 89 16.244 18.25% 

0.10 67 7.782 11.62% 

0.11 32 -16.198 -50.62% 

0.12 30 -9.229 -30.76% 

0.13 27 -4.929 -18.26% 

0.14 36 10.012 27.81% 

0.15 22 0.848 3.85% 
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Table 3. The magnitude and statistical significance of p-hacking. 
This table reports the results of post hoc pairwise comparison for the residuals from curve fit in Figure 3. We compare the 

residuals at 0.05 and 0.06 to the residuals of the rest p-values.  In Panel A, the sample only include p-values reported with 

two decimal places; in Panel B, we use the full sample of exact p-values. Column (1) is the observed frequencies for 0.05 

and 0.06, (2) is the residual frequency from the fitted exponential function, computed as the difference between observed 

frequency and predicted frequency. Column (3) reports the ratio of the residual frequency in (2) to the observed frequency 

in (1). P-values in Column (4) are the p-values of mean differences between the residual of focal p-value (0.05 or 0.06) and 

the reference group, and p-values in the last column is adjusted for multiple comparison using the Dunnett’s test.  

 

 (1) (2) (3) (4) (5) 

p-value Freq 
Residual Freq 

(Observed-predicted) 
(2)/(1) p-value 

p-value adjusted 

for multiple 

comparison 

Panel A: Only including p-values reported with two decimal places 

0.05 122 32 26.23% 0.002 0.005 

0.06 60 -16 -26.67% 0.281 0.340 

Panel B: Rounding all p-values to two decimal places 

0.05 214 48 22.43% 0.053 0.113 

0.06 121 -14 -11.57% 0.594 0.856 
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Table 4. Comparing the extent of p-hacking across various subsamples. 

This table provides results of post hoc pairwise comparison for each histogram in each pair of subsamples. For 

each histogram in a pair of subsamples, we derive the residual of exponential fit for every p-value from 0.00, 

0.01, to 0.15, and then compare the residuals at 0.05 and 0.06 with the mean residuals of the rest 14 p-values. 

Results for 0.06 are all insignificant and thus omitted. Column (1) is the observed frequencies for 0.05, (2) is the 

residual frequency from the fitted exponential function, and (3) is the ratio of residual frequency to observed frequency. 

Column (4) reports the p-values from tests of difference between the residual at 0.05 and the mean residuals for p-values 

in the reference group, and p-values in the last column is adjusted for multiple comparison using the Dunnett’s test. 

 

 (1) (2) (3) (4) (5) 

Subsamples Freq 
Residual Freq 

(Observed-predicted) 
(2)/(1) p-value 

p-value adjusted for 

multiple 

comparison 

Panel A: At least one tenured authors 

Yes 104 9 8.65% 0.311 0.526 

No 72 27 37.50% 0.016 0.033 

Panel B: Experience      

More 93 11 21.88% 0.417 0.648 

Less 107 28 16.98% 0.022 0.051 

Panel C: Contain female authors 

Yes 109 15 13.76% 0.122 0.238 

No 105 28 26.67% 0.083 0.170 

Panel D: Sole authored article 

Yes 67 24 35.82% 0.027 0.06 

No 147 20 13.61% 0.157 0.298 

Panel E: School Ranking 

High 100 32 32.00% 0.083 0.151 

Low 114 17 14.91% 0.271 0.474 

Panel F: PhD School Ranking 

High 96 21 27.38% 0.050 0.107 

Low 106 18 9.64% 0.158 0.298 

Panel G: N_ Participants 

High 111 28 25.23% 0.051 0.110 

Low 99 14 14.14% 0.139 0.226 

Panel H: Google_Citations  

High 129 31 24.03% 0.026 0.059 

Low 85 11 12.94% 0.377 0.616 

Panel I: Web_Citations  

High 132 34 25.76% 0.026 0.059 

Low 62 1 1.61% 0.808 0.974 
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Table 5. Rejection rates after adjusting for multiple hypotheses testing. 

The table reports the percentage of at least one significant interaction effect from analysis of variance (ANOVA) 

based on 1,000 random samples. The Column “Researcher’s degree of flexibility” displays the flexibility 

available for researchers. The baseline is a 2 × 2 “experiment” with 20 observations per cell and only one 

dependent variable. In situation 1, a researcher collects two dependent variable and conduct 3 ANOVA tests, 

one on each variable and a third on the mean of the two; we report significant result if any one of the ANOVA 

delivers statistically significant interaction effect. In situation 2, the researcher can choose to whether collect 

additional 10 observations per cell or not. In situation 3, the researcher can add another condition or not, we 

report significant results in any two of the conditions have statistically significant interaction effects. Situation 

4 to 7 are different combinations of the first 3 situations. In each situation, we get the lowest p-values among all 

interaction effects, and check if it is lower than 5%.   

 

 % of p-values below significance threshold 

 (1) (2) (3) (4) 

Researcher’s degree of flexibility 
p<=.05 

Bonferroni 

method 

Bootstrap 

adjusted p-

value 

BH method 

Situation 0: Baseline 3.80% 3.80% 3.90% 3.80% 

Situation 1: Two dependent variables 7.60% 2.70% 3.90% 3.70% 

Situation 2: Adding 10 obs per cell 6.30% 3.10% 4.20% 3.40% 

Situation 3: Adding another IV 14.10% 4.30% 5.00% 5.80% 

Situation 4: Combining 1 and 2 12.30% 2.30% 3.70% 2.90% 

Situation 5: Combining 1 and 3 25.60% 2.60% 6.20% 4.80% 

Situation 6: Combining 2 and 3 22.00% 4.50% 5.90% 5.30% 

Situation 7: Combining 1, 2, and 3 34.30% 2.90% 6.60% 4.70% 

 

 

 

 

 

 

 

 

 

 

 

 

 


