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Problem Statement: Develop and implement an algorithm that reduces the
amount of time necessary for analysts to detect intrusions of bad actors in client
networks and facilitates the detection of new intrusions not discovered before.
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IMPACT

1. Direct Labor Savings 2. Avoidance Savings 3. Novel ML Tools

$1M+ $35M+ patentable research

Impact to Security Analysts: Impact to Clients: Impact to Rapid7:

Created machine learning models to classify 90% of By laying the foundation for modern machine learning Packaged flexible, scalable, and auto-tuned machine
the data as “normal”, significantly reducing manual in cybersecurity and driving initial findings, Rapid7 and learning pipeline to be used on any data sets for future
review of client network data at a projected $1M+ their clients can avoid costs of at least $35M+ annually anomaly detection use cases

DATASET TWO-PART METHODOLOGY
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Rapid7 deploys “hunts” on @ Tree Approach to Contextualize Data @ Machine Learning Pipeline

client computer networks, ‘ .

which are deep downloads of To contextualize data, we used paths to create a tree Within each leaf, we processed the data to reduce dimensionality and
computer behavior in a two grouping similar processes together into leaves executed machine learning models automatically tuned with Bayesian
week period; we used this optimization to identify anomalies and designate anomaly scores
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INITERPREIABILILY FUTURE DIRECTION

| |
In order to add a layer of interpretability to our models, we devised two simple " Confirm results with additional analyses using synthetic data
approaches to tie feature importance to our anomaly scores: = Develop cross feature interpretability
" |nterpretable regression model against anomaly scores on the original features = Apply machine learing pipeline on other datasets for future research
" |ndividual feature anomaly scores for each process .

Create database of labeled intrusions and hacks for improved machine learning

" Continue developing key relationships with security analysts for feedback




