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INTRODUCTION DATA

StubHub is the world’s largest ticket resale platform. In this '\‘ ss2 g

online marketplace, sellers have the flexibility to set their own

prices. However, determining the ‘best’ price for a ticket is a WA LERGER BRSEOALL 550
non-trivial task, since each individual ticket is unique and the l‘ NBA
value of the ticket can fluctuate depending on a multitude of cecommentos $58
factors.

Problem Statement: How can we develop a (i) bidding and (ii) X\{el\ﬁ;ﬁzgtrg?/agzeféta for NBA. MLB 2018
diversification strategy for an off-market bidding platform where B. Proprietary Internal Models for Price
sellers can instantly sell their tickets? Recommendation & Seat Quality

KEY RESULTS

Significant improvements Relative to Baseline. Based on simulation results, our proposed data-driven
optimization approach could increase operating income by ~200% and return on investment by ~4 compared to

the heuristic baseline strategy.
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METHODOLOGY

Listings t hours before event

We propose an ensemble of models that use historical transactions to estimate
the probability of a ticket selling at price p; and historical listings to estimate the
probability of a bid b; being accepted. Using these probability estimates, we
formulate an optimization model to decide whether to make an offer at all (z,).
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Key Challenges: Absence of counterfactuals for P(accept) and P(sell) for gt
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