Thermo Fisher SCIENTIFIC

TFS mentors: John Van Hoy, Yash Shah, Heather Bryson, Debra Shaumberg

MIT Faculty Advisor: James Butler

ClinOpt

Clinical Optimization for Smarter, Low-Deviation Trial Design

Noe Bertramo

PROJECT OVERVIEW

Problem Statement

90%

of drug candidates fail in clinical trials

→ Nearly half due to protocol design & execution flaws

ClinOpt empowers clinical scientists to design smarter, lowdeviation protocols.

Uses **historical trial** data to assess how design choices like eligibility or visit schedules affect deviations.

By turning intuition into evidence, ClinOpt helps reduce trial complexity and improve **execution** success.

Data

1000+ Protocols

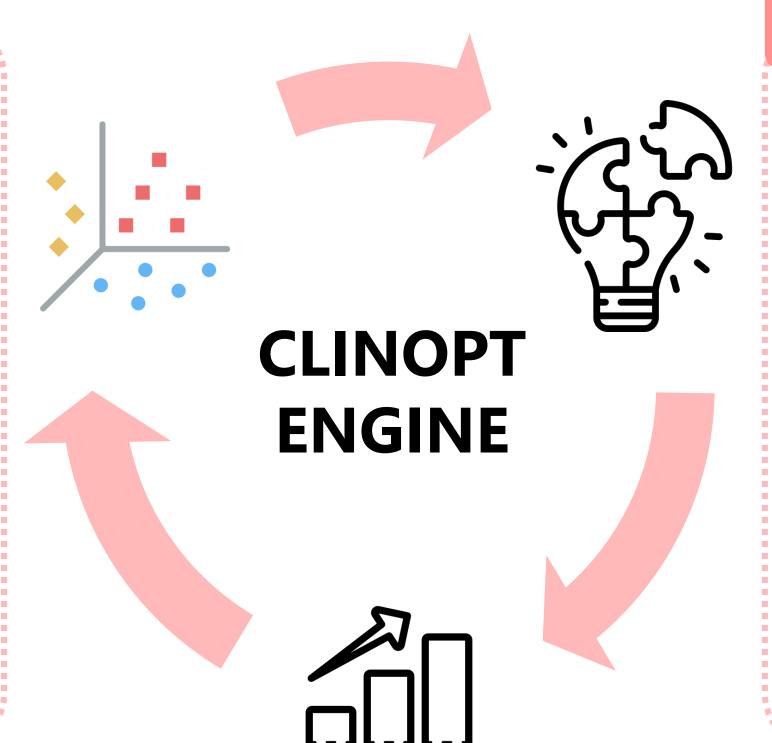
- Covers 23+ specialties
- Free-text data format
- Rich data (trial endpoints, patient eligibility criteria...)

1.4M + Deviations

- Sourced from Thermo Fisher internal deviation logs
- Categorized by types
- Text descriptions and status

PROJECT GOAL

Translate clinical intuition into data-driven protocol design decisions


METHODOLOGY

1. Smart Clustering

Goal: Establish baseline deviation rates

- **Group** trials by features (e.g. therapeutic area)
- Selection based on mutual information, χ^2 and clinical relevance.
- Ensures comparisons are made across meaningful subgroups

Features	Mutual Information
Sponsor	4.13
Therapeutic Area	2.32
Phase	1.31

2. Feature Generation

Goal: Let scientists statistically test design hypothesis

- Users frame protocol-based questions
- NLP agent extract and verify structured binary/categorical information
- Supports criteria like "Is having a history of strokes an exclusion criteria?"
- Features are meant to **explain** deviation count variation within each subgroup

3. Causal Inference (DML)

Double Machine Learning (DML)

- → A technique that separates prediction from inference
- → Controls confounders to isolate causal effects

جَجِيَّ Setup

- Grouped trials (e.g. ophthalmology)
- Outcome: deviation count
- Features: initial protocol parameters and user-defined treatments

Adjustments

- Confounders: trial phase, sponsor, country...
- Use ML to estimate nuisance
- Balance covariates

- Estimate causal effect size
- Standard Error, Confidence Intervals
- Feature importance ranking

RESULTS

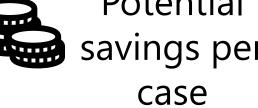
Study Case

Genetic testina required Diagnostic procedure required

- Tested ClinOpt on oncology trials to assess which features drive deviation rates.
- Found that inclusion criteria requiring diagnostic procedures (e.g. MRI, CT...) significantly increase deviations.

Business Impact

50+


per case

Manual

