Optimizing User Experience in Hotels Searches by Accurate Price Forecasts

Location: Needham, MA

TripAdvisor team: Craig Schmidt, Jeff Palmucci

MIT Advisor & Mentor: Prof. Robert Freund, Renbo Zhao

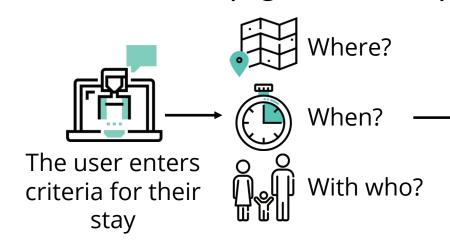
Problem Statement

Getting real-time prices is time-consuming and expensive:

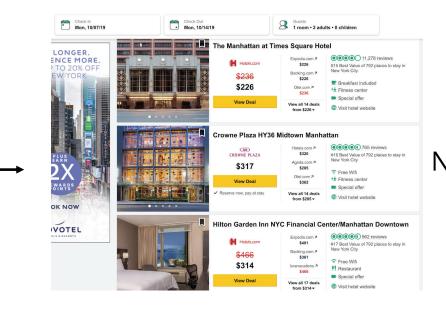
How to avoid requesting prices in advance from 100+ external providers for all 365 possible travel dates and 400+ hotels?

→ Accurate price forecasts

How does hotels' page work on TripAdvisor?



Real-time prices are received from external providers (Booking.com, Priceline, ...) via HAC (Hotel Availability Check) calls



Scope: **New York City** Hotels

Timeline

February - March

March - July

July - August

- Exploratory Data Analysis
- Iterations of
 - Finalization of All Models Exploratory Data Analysis Offline & Online Testing
- Outlier Detection
- Feature Engineering
- Price Forecast Models

Data Sources

Hotel search history*

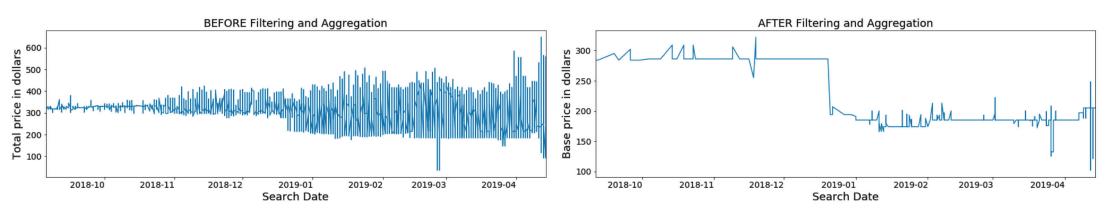
Hotel id	Search time	Check-in date	Number of nights	Number of adults	Number of children	Base room rice (USD)
123945543	2018-12-03 12:34:45	2019-12-23	2	2	0	358
1024856	2019-03-29 13:34:23	2019-06-23	4	2	1	281
7495038	2019-04-03 10:23:02	2019-05-14	1	1	0	189

*Artificial data example printed for confidentiality purpose

Scope

- Searches from September 2018 to July 2019
- 416 hotels (Manhattan)
- 127 external providers
- More than 20B rows

Exploratory Data Analysis



Variation Causes

Solutions: Data transformation

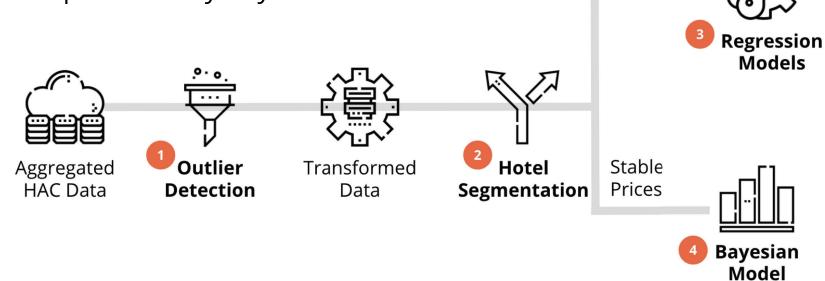
- **External Providers**
- Aggregated by hour and day with mode prices Forecasted on base prices instead of total prices
- Price Conversion
- Filtered on USD as original currency
- Number of Nights
- Filtered on number of night equals one
- Room Types
- Filtered on queries that have two adults and zero child

Oscillating

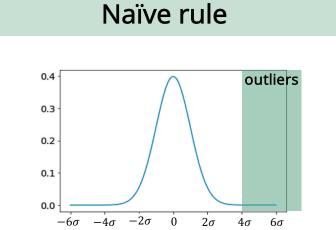
Prices

Methodology

Our final model is an ensemble model where hotels with oscillating prices are predicted by regression models, while the others are predicted by Bayesian models



1. Outlier detection



Outliers: Data points greater than median + 4σ of prices on the same check-in date

Outlier

DBSCAN

B and C: reachable points Outliers: Data points outside density regions

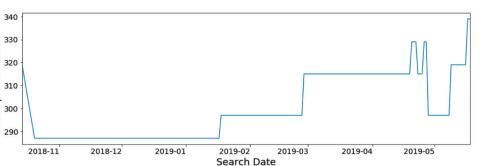
Gaussian Mixture Models

Outliers: Data points that have low likelihood or are in distributions with low soft counts

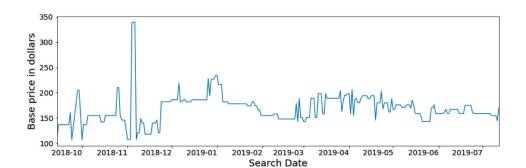
2. Hotel Segmentation

Powered by K-means clustering using the degree of continuity of price oscillations and the average duration of price plateaus

Sample hotel with STABLE prices



Sample hotel with OSCILLATING prices



3. Regression Models

Features

- Time until travel, decomposed into buckets of time
- Day of week of the check-in date
- Month of the check-in date
- Day of week of the search date
- Latest room prices in history
 - For the requested check-in date and adjacent check-in dates
 - For the requested check-in date and past search dates
- Whether the check-in date is a holiday or not
- + For the hour aggregated data: hour of the search date

Models

- OLS
- Lasso Regression
- CART

- Ridge Regression
- Holistic Regression

4. Bayesian Models

Using Bayes theorem, estimate the rate of price change θ for each hotel, on 2 different time windows

- Long-term **Reserve** model: past 30 days prices
- Short-term **Vanguard** model: past 5 days prices

Price emission ~ Bernoulli | Prior and Posterior ~ β | Likelihood ~ Exponential

- **Price update**: Prior ~ Beta → New price → Update Posterior ~ Beta
- **Hypothesis test**: H0: $P_{reserve}(\theta|X)$ and $P_{vanguard}(\theta|X)$ follow the same distribution
 - If rejected: replace reserve with vanguard
 - Otherwise: do not change
- **Prediction**: if $P_{reserve}(\theta|X) \geq \tau$, the predicted price is the latest historical price

Final Model Results

For the ensemble model, out-ofsample performances are in average:

*Baseline: median hotel price from the past search week

***Improvement in MAPE is calculated in percent change

**Improvement in R-square is calculated in relative difference

R-squared MAPE Baseline* -0.32 26%

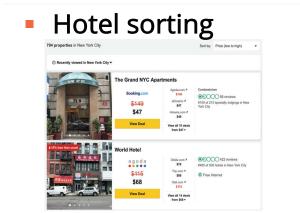
Ensemble model 0.89 + 1.21** - 89% Improvement over baseline

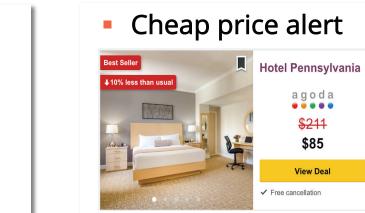
The most significant features for regression models are:

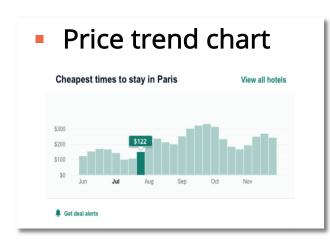
	Rank	Feature				
	1	Latest price for the check-in date				
	2	Latest price from yesterday				
	3	Latest price from 2 days ago				
	4	Latest price from 3 days ago				
	5	Latest price for the day before check-in				

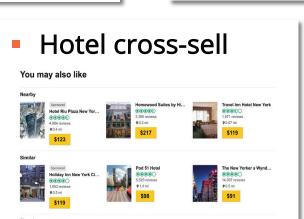
Potential Business Opportunities

extra revenue is estimated if our approach is implemented to the following business applications









Heatmap calendar

Next Step

A/B Testing

Conduct an A/B test and assess model and business metrics to prove the approach has positive treatment effects

Implementation Implement the approach in production

Outlier detection models will update on a monthly basis and forecast models will be monitored and retrain accordingly