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Abstract:
Approximately $800 billion of adjustable-rate mortgages (ARMs) indexed to LIBOR remained
outstanding when LIBOR was published for the last time on June 30, 2023. For the many
ARMs that lacked fallback language specifying an alternative index, the Federal Reserve
mandated replacing LIBOR with the corresponding Term Secured Overnight Funding Rate
(Term SOFR) plus a fixed spread. The conversion rule created the possibility of significant
wealth transfers between ARM borrowers and lenders because the mandated spreads
neglected to account for the difference between rate spreads in the ARM market and in the
LIBOR market. To evaluate the size and incidence of realized transfers, we develop a valuation
framework that takes the historical spread between LIBOR-indexed and Treasury-indexed
ARMs as the best estimator of the neutral spread adjustment, and that projects future cash
flows for the affected universe of ARMs using auxiliary models of prepayment, default, and
term structure dynamics. We estimate that mortgage lenders benefited significantly at the
expense of borrowers, with a total present value transfer of $247 million as of the conversion
date. The size of individual transfers varied with mortgage and borrower characteristics.
Future unintended wealth transfers could be made less likely by routinizing the inclusion of
appropriate fallback language in floating rate contracts offered to households, and with
greater transparency on the part of regulators about the redistributive consequences of their

policy choices.
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1.1 Introduction

On June 30, 2023, all tenors of the LIBOR index were published for the final time, marking
the end of an era in global financial markets. According to Alternative Reference Rates
Committee (2021) as of that date, approximately $74 trillion USD in outstanding financial
contracts remained indexed to LIBOR. While most of the contracts contained fallback
provisions specifying a replacement index in the event of LIBOR’s discontinuation, most
of the approximately $800 billion of LIBOR-indexed consumer retail mortgages that were
projected by ARRC (2021) to remain open past the conversion date lacked a specified
alternative.

For contracts that were governed by U.S. law and that lacked explicit fallback provisions,
the Federal Reserve was authorized to establish a standardized conversion rule. To facilitate
the transition away from LIBOR, the Alternative Reference Rates Committee (ARRC)—a
group convened by the Federal Reserve—recommended Term SOFR as the preferred replace-
ment benchmark. Specifically, for LIBOR-indexed contracts without fallback provisions, the
ARRC mandated conversion to Term SOFR, with the term corresponding to the LIBOR
tenor in the original contract. The Secured Overnight Financing Rate (SOFR), published
daily, reflects the cost of borrowing overnight using U.S. Treasury securities as collateral.
Term SOFR rates are derived from the pricing of SOFR futures contracts, which have payoffs
dependent on realizations of compounded overnight SOFR rates prior to contract expiration®.

To compensate for the typical spread between LIBOR and Term SOFR at popular tenors,
the Federal Reserve mandated a schedule of spread adjustments that it based on median

1See CME Group Benchmark Administration Limited (2025) for an in-depth explanation on the pricing of
the multiple tenors of the Term SOFR index given only the one- and three-month SOFR futures contracts
available for trade. This document is based on the methodology described in Heitfield and Park (2019) and is
intended to create “forward-looking term reference rates that are conceptually similar to the term LIBOR
rates commonly used in loan contracts.”
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historical spreads between LIBOR and a proxy for Term SOFR (sce Appendix 1.A for more
detail on that calculation). An adjustment based on historical LIBOR spreads would be
predictive of a value-preserving conversion rate for a contract that has LIBOR-like risk and
liquidity characteristics.

However, for ARMs whose valuations depend primarily on the pricing of mortgage default
and prepayment risk and on liquidity in the mortgage market, the value-preserving spread
may bear little resemblance to the historical LIBOR spread. Inferring a value-neutral spread
adjustment for ARMs directly by statistical inference is not possible because historically
ARMs were not linked to compounded overnight rates. Fortunately, a significant number of
ARMs were issued that were quoted at spreads to Treasury rates rather than to LIBOR rates.
Theoretically, we show that the spread between LIBOR-linked and Treasury-linked ARMs
should be similar to the spread between LIBOR-linked and SOFR-linked ARMs. We find
that the historical spread between LIBOR-linked and Treasury-linked ARMs is quite stable,
and use it as the best available proxy for the value-preserving spread adjustment for ARMs.

To assess whether the ARRC’s prescribed spread adjustments appropriately preserve
values for open LIBOR-indexed mortgages, we develop a comprehensive model for ARMs that
incorporates both the behavior of the underlying reference rate and borrower-driven factors
such as prepayment and default. By pricing the remaining pool of LIBOR-linked ARMs
under the Term SOFR plus constant adjustment framework and comparing the resulting
value across a suite of alternative constant spreads, we estimate bounds on the value transfer
that occurred on the conversion date. To our knowledge, this is the first paper to calculate
the value transfer that occurred from the transition.

Estimates of the value transfer depend on several important model parameters. In our
preferred specification, we document a value transfer of around 0.51% of the outstanding
balance of the loans subject to the conversion, totaling $256 million. We find that this effect
is larger for loans that already floated prior to the conversion, loans where the borrowers
have lower credit scores, and younger loans. We conclude that the value transfer is sensitive
to the value used for a fair spread, with the total transfer ranging from $256 million to $380
million given a reasonable range in fair spread alternatives.

This paper focuses on the value transferred in dollars from borrowers to lenders in the
relatively small ARM segment of the mortgage market after the discontinuation of LIBOR.
Cooperman et al. (2025) document additional real effects from a shrinking credit supply due
to the inability of banks to hedge their risk without LIBOR-indexed lending. Jermann (2024)
document the inability of Term SOFR to hedge against credit risk by running a counterfactual
analysis which estimates that LIBOR-indexed loans would have accrued less interest (1-2% of
notional amount of loans) had they been indexed to a compounded SOFR during the financial
crisis. This paper complements those analyses by documenting another channel by which the
replacement of LIBOR with Term SOFR impacted cash flows for existing contracts.

There exists some research on drivers of the difference between LIBOR and alternative
indices. For example, Skov and Skovmand (2023) decompose the LIBOR-OIS spread into
a credit risk component and a funding-liquidity component, showing that the jump in the
spread at the onset of COVID-19 is primarily due to credit risk. The presence of these
additional risk premiums are the core of the challenge inherent in replacing the index for
open LIBOR-issued securities.

The rest of the chapter is organized as follows. In Section 1.2 we provide a theoretical
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foundation for the imputation of a ncutral spread and our mortgage pricing methodology.
We highlight the challenge of pricing contracts which are indexed to a rate with risk premia
which do not reflect the underlying risk of the contracts. Section 1.3 describes our model
for mortgage cash flows and valuation, including the dynamics driving the yield curve and
Term SOFR rates. We describe the data used in our analysis in Section 1.4, highlighting
interesting features of the pool of open LIBOR-indexed ARMs subject to the LIBOR-Term
SOFR conversion. Key parameters of our valuation models are calibrated in Section 1.5. In
Section 1.6 we present estimates for the value transfer given our baseline model calibration as
well as under a variety of alternative assumptions as a robustness exercise. Finally, Section
1.7 concludes.

1.2 Background and Pricing Considerations

In this section we document the time-varying spread between LIBOR and corresponding
tenors of Term SOFR. We argue that a fair spread adjustment must preserve the value of
the contracts, rather than simply reflecting differences in the levels between the index being
replaced and its replacement. We show that the spread imposed by the Federal Reserve did
not consider mortgage valuation. Finally, we explain why the difference in the fair spread
adjustment induced a value transfer on the day of the conversion.

1.2.1 LIBOR Versus Term SOFR

Term SOFR rates differ in important ways from the corresponding LIBOR rates that they
were used to replace. Because it is based on overnight risk-free rates, Term SOFR rates lack
the term premia and a bank credit risk premia present in LIBOR rates. The absence of those
premiums causes Term SOFR rates to be systematically lower than LIBOR rates.

Figure 1.1A illustrates the spread between LIBOR and a proxy for Term SOFR for
different tenors, highlighting the magnitude and time-variation of the missing premia. The
spreads, which vary over time and with financial market conditions, are wider for longer
maturities. In Figure 1.1B, it is apparent that LIBOR is the more volatile series. While some
of this is attributable to the rolling average nature of Term SOFR, the volatility of LIBOR is
also driven by the volatility of the premiums included in LIBOR but not reflected in SOFR?.

1.2.2 Determining a Fair Conversion Spread

We define the fair or neutral conversion rate spread adjustment, z*, as the constant that
equates the value of an existing LIBOR-linked mortgage, had LIBOR continued, with its
value when the index is switched to Term SOFR plus x*. In other words, z* is the adjustment
spread that is expected to leave borrowers and lenders no better and no worse off than had
LIBOR continued. Note that secondary market mortgage values often differ significantly from
their outstanding principal because of post-origination changes in perceived credit quality

2Term SOFR data was not published before April 21, 2021. Term SOFR data for dates since September
18, 2020 has since been published. The Term SOFR series shown in the graph for dates prior to September
18, 2020 relies on proxies for Term SOFR described in the notes to Figure 1.1.
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Figure 1.1: LIBOR and Term SOFR
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(A) The spread between LIBOR tenors and the corresponding tenors of a proxy for Term SOFR
over time.
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(B) One year LIBOR and proxy one year Term SOFR over time.

Note: LIBOR data come from JP Morgan Markets. Our measure for Term SOFR is based on historical Term
SOFR data from JP Morgan Markets beginning September 18, 2020 and proxies for Term SOFR prior to that
date. The date t proxy for Term SOFR is the forward-looking N-day average of proxies for SOFR. SOFR
proxies are as follows: 1) SOFR beginning on its publication date, April 2, 2018; 2) a Fed-published historical
proxy for SOFR between August 22, 2014 and March 31, 2018; and 3) a measure of overnight repurchase
rates provided by surveying primary dealers in the overnight Treasury general collateral repo market. For a
detailed discussion of historical proxies for SOFR, see Bowman (2019).
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and market conditions. Hence, an auction mechanism that identified the spread that marked
mortgages to market would not reveal x*.

It is challenging to empirically estimate x* for several reasons. Clearly, even if there were
a liquid secondary market for ARMs, the counterfactual value of a mortgage had LIBOR
continued is unobservable. Secondary market prices around the conversion date reflect the
effects of the chosen conversion rule on value. While one could build a model of hypothetical
future LIBOR and SOFR dynamics and project future mortgage cash flows in each case, the
results would be highly sensitive to the interest rate model and to supporting assumptions
about discount rates.

In this paper we identify a value-preserving spread x* using mortgage data. In Section
1.5.3, we leverage ARMs with similar characteristics to those which were subject to the
LIBOR conversion but which were indexed to Treasury rates instead of LIBOR. We show
that these mortgages have similar initial interest rates but that the Treasury-indexed ARMs
have a higher spread than those indexed to LIBOR. This additional spread represents the
market’s perception of a fair constant adjustment to equate the value of loans indexed to a
Treasury rate with the value of ARMs indexed to LIBOR. In Appendix 1.B we show that
Treasury rates are approximately equal to Term SOFR in expectation—this allows us to
assert that a x* based on Treasury-indexed ARMs is value-preserving for LIBOR-indexed
ARMs converted to Term SOFR.

1.2.3 The Federal Reserve’s Conversion Spread

The Federal Reserve imposed a constant spread adjustment equal to the median spread
between each tenor of LIBOR and a proxy for each corresponding tenor of Term SOFR over a
five-year window. Appendix 1.A details this calculation. This method is a reasonable one to
capture the median level of the index rate; however, it does not necessarily preserve mortgage
valuation.

This approach is not likely to capture a value-preserving spread x*, as the valuation of
Term-SOFR indexed ARMs may be different from the valuation of LIBOR~indexed ARMs.
One possible reason for this difference is that the risk premiums included in LIBOR allowed
lenders to hedge their own risk; Term SOFR plus a constant does not achieve the same
effect. In addition, by replacing a floating index with another index composed of a variable
piece and a fixed piece, the conversion led ARMs to behave more similarly to FRMs than
when the entire index was a floating rate. This shift in the importance of the floating rate
plausibly impacts mortgage valuation. Our methodology for the computation of 2* described
in Section 1.2.2 and implemented in Section 1.5.3 appropriately accounts for differences in
how the market prices ARMs indexed to Term SOFR and ARMs indexed to LIBOR.

1.2.4 Value Transfers Under The Federal Reserve’s Conversion
Spread

Having established that the Fed-imposed constant spread adjustment x likely does not
equal the value-preserving constant spread adjustment z*, we now show why this inequality
constitutes a value transfer as of the conversion rate. As a simplified motivating example,
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consider a balloon, interest-only (I0) loan indexed to Term SOFR plus a constant, with
principal P and with 7" annual payments remaining. Loan A has the value-preserving constant
x* as its constant, and Loan B uses the Fed-imposed constant x. Assume that x # x*. Table
1.1 shows the cash flows for these two loans, as well as the difference.

Table 1.1: Cash Flows for Hypothetical Balloon 10 Mortgages

t=1 t=2 t="1T

Loan A P x (Term SOFR(0) +z*) P x (Term SOFR(1) +2*) --- P x (1 + Term SOFR(T —1) + z¥)
Loan B P x (Term SOFR(0) + z) P x (Term SOFR(1) +z)  --- P x (14 Term SOFR(T — 1) + z)
Difference P x (z* —x) P x (z* —x) P x (z* —x)

For this hypothetical loan, the value transfer that occurred due to the difference between
x and x* is the present value of the difference in the cash flows. Absent prepayment and
default risk, the difference in cash flows between Loan A and Loan B is risk-free and constant
(it does not depend on any index). Therefore the value transfer is the sum of each of the
cash flows in the final column in Table 1.1 discounted at the risk-free rate. If the value of the
difference in values of Loan A and Loan B is positive, that represents a benefit to borrowers as
the payments are worth less than they would be under a fair value. This decreased payment
burden comes at the expense of lenders. Conversely, if the difference has a negative present
value, there was a value transfer in favor of lenders at the cost of borrowers.

Our analysis generalizes that simple example to compare the value of the loans under a
fair value spread x* to the value under the Fed-imposed spread x. However, there is additional
complexity for the loans we consider relative to the simplifying assumptions made here. The
loans in our analysis are subject to amortization as well as prepayment and default risk.
Prepayment and default decrease the estimated value transfer, because they shorten the
window during which the difference in cash flows exists.

In addition, amortization of the principal for loans in our analysis introduces non-linearity
which prevents the separation ex-ante of a fixed and floating interest component as in the
difference row of Table 1.1. This causes the difference in cash flows to not only depend upon
the magnitude of the difference between x and x*, but also on the realized path of Term
SOFR.

Another distinction between this hypothetical example and the non-balloon, non-IO
ARMs subject to the LIBOR-SOFR conversion is the impact of interest rate caps and floors.
A binding interest rate cap or floor attenuates the difference in the total interest rate for
loans indexed to Term SOFR plus x relative to Term SOFR plus z*. This effect on valuation
will be exaggerated if the caps and floors bind early in the remaining life of the loans, when
the discounting is smallest.

The presence of prepayment and default risk as well as the presence of a floating interest
rate index in the difference between cash flows under x and under x* complicate the determi-
nation of the correct discount rate. The floating interest rate index contains risk premiums
which do not match the risk inherent in an ARM. This mismatch between the risk premiums
included in the index and the risk inherent in the contract presents a unique challenge to
valuation.

Contracts with payments that are indexed to a rate which exactly reflects the market
price of the risk embedded in the contract will trade at par. For example, LIBOR reflected
the cost of unsecured interbank funding. Accordingly, a one-year unsecured interbank loan

20



originated at date t that pays the then-current value of one-year LIBOR at maturity would
be worth its face value. However, for a risk-free loan indexed to LIBOR, the risk-free rate
would not be the correct discount rate. LIBOR has a negative beta due to the credit risk
premium, so this risk-free loan indexed to LIBOR would have a discount rate less than the
risk-free rate. In Appendix 1.B we show that for the floating component of mortgage cash
flows, the appropriate discount rate is Term SOFR plus a premium for mortgage prepayment
and default risk. The discounting of the cash flows in our analysis is detailed in Section 1.3.3.

1.3 Methodology

In order to determine the size of the value transfer, we compare the value of the converted
ARMs under the spread imposed by the Fed with their value under a value-preserving spread
x*. We estimate a range of plausible values for z* in Section 1.5.3.

The valuation of ARMs requires several key components. We must first establish the
process for projected Term SOFR values. Given an interest rate path, a detailed accounting
of the rules of ARM rates, including any caps and floors, determines the size of a regularly-
scheduled payment for a current loan. Prepayment and default risk must also be modeled.
Finally, total projected cash flows must be discounted to determine their value on the date of
the conversion. The difference in the discounted present value of these simulated cash flows
under the Fed-imposed spread and a fair spread represents the value transferred through the
LIBOR replacement.

1.3.1 Interest Rates

In this section we explain how the risk free yield curve is simulated and how Term SOFR is
derived from simulated paths of the yield curve. We then discuss how simulated Term SOFR
values translate into the mortgage note rate. We elaborate on the separation of the mortgage
note rate into a fixed and a floating component, an important distinction when discounting
mortgage cash flows.

Yield Curve Model

The interest rate process is central to our analysis, as it directly determines the size of
mortgage payments (see Section 1.3.3) and serves as a driver of prepayment and default
behavior among ARM holders (see Section 1.3.2). We use a simple extension of the Nelson
and Siegel (1987) model for the yield curve. If y,(7) is the yield for maturity 7 at date ¢, the
baseline for our term structure model is

1 —e /N 1 —e /N
Y(T) = Brt + Poy (T) + B3 (T - G_T/At> (1.1)

This yield curve specification is a powerful representation in that it can capture a wide
variety of yield curves. Diebold and Li (2006) demonstrate the usefulness of this specification
in applications where the yield curve must be forecast, especially over long horizons. The first
factor, 31, can be interpreted as a level factor, because lim,_, v;(7) = /1. The second factor
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can be interpreted as a slope factor. This follows from the fact that lim, oy, (7) = Bt + Bos;
thus, [, allows for a slope between the yields of very short and very long horizons.

The third factor in this representation, fs,, can be considered a curvature or “hump"
parameter. Note that the limit of the third factor loading is 0 as 7 approaches 0 or infinity
and is positive in between. The parameter \; controls the maturity at which the third factor
loading is maximized and is thus the maturity at which the yield curve has a hump shape.
Bs, determines the size of this hump.

This specification differs from many other interest rate models such as Cox, Ingersoll, Ross,
ct al. (1985) in that it directly models the shape of the yield curve, rather than deriving the
yield curve from first principals. It was developed to flexibly capture many yield curve shapes
that other models are ill-equipped to fit. Using Equation 1.1, we can fit the Nelson-Siegel
model to the bootstrapped yield curve on any given day to estimate the parameters B” and
At

Specifying factor dynamics allows us to use the Nelson-Siegel model to forecast the yield
curve given a starting set of parameters. We will use simulations of the yield curve to derive
our simulated path for Term SOFR values. Let

5:1,0
XO — @2’0
B30
Ao
be the set of parameters to minimize the MSE between the Nelson-Siegel modeled yield curve

and the bootstrapped yield curve on the conversion date. We assume that the evolution of
the vector or model parameters X follows a mean-reverting process, such that

XtJrl = (57 -+ (1 — (5)Xt + O&t11 (12)

The calibration of parameters §, X, and o is discussed in Section 1.5. Occasionally, the
simulated yield curve factors are such that the yield curve slopes downward over the first few
months, something which is not seen in the data. We modify this standard Nelson-Siegel
model by adding a factor which decreases the likelihood of negatively sloped yield curves
over the first three months. The factor g(7) has the following specification:

—0.0025+ = 7 <0.25
o(r) =
0 7> 0.25

This functional form decreases predicted instantaneous yields by 25 basis points and
linearly converges to zero at three months maturity. Our final specification of the yield curve
is given by Equation 1.3:

. 5 5 1—e /A A 1— e /A i
U(T)=01e+Por | ———— | + B34 | ———— — e 4 g(7) (1.3)
T )\t T/)\t
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Term SOFR Simulation

While the Nelson-Siegel model allows us to forecast the yield curve, the rate for floating
mortgages is determined by the appropriate tenor of Term SOFR rather than a point on
the yield curve. Term SOFR is based on SOFR futures contracts whose payoftf depends on
realization of compounded overnight interest rates over the relevant period. Term SOFR
therefore corresponds to the expected average of overnight rates over the appropriate maturity.
In our analysis we simulate the yield curve on a daily basis and define SOFR to be the
overnight rate. Each tenor of Term SOFR on date ¢ is then estimated as the compounded
overnight rate for the appropriate number of days following date t.

Let 7PN = §,(555) be the simulated overnight rate as of date t. We parameterize the
Nelson-Siegel model such that r®N is an APR. Then given that Term SOFR is quoted in a
simple interest convention, the Term SOFR rate at date t for 7-day maturity is given by

T—1 ON
r 360
=TT+ ) 1) == 1.4
5t ( (+360) >T (1.4)

s=0

This definition of Term SOFR implicitly assumes perfect foresight along each simulation
path, as Term SOFR always exactly corresponds with the subsequent realization of the
simulated path of overnight SOFR. Having described the derivation of Term SOFR, we now
outline the projection of mortgage cash flows along each simulated Term SOFR path.

Mortgage Note Rates

We write the interest rate on loan ¢ and date ¢ as m;; = r;; + vy;, where y; is the total fixed
portion of the interest rate and r;; is the relevant Term SOFR index value for loan ¢ as of
date t. ARMs include a lookback period which specifies how many days before a floating
ARM’s next interest rate reset date the relevant index is referenced. Due to this lookback
period, the gap between interest rate resets for floating loans, and the possibility of mortgage
note rate caps and floors, it is likely that r;; # 7, where r; is the current 12-month Term
SOFR rate at date ¢.

For mortgages making a regular monthly payment, this payment will consist of a portion
which goes to paying down principal and a portion made of interest on the current balance,
according to the regular amortization schedule of the loan. The interest component can be
further divided into two components based on the fixed and floating portions of the overall
mortgage note rate. In our notation, the fixed rate component y; includes the mortgage-
specific margin as well as the fixed constant adjustment to the index. r;; is the value of
12-month Term SOFR when loan i last reset its rate, subject to any caps and floors.

Features in ARM contracts such as infrequent rate resets and lookback periods complicate
the division of interest rates into fixed and floating components. For loans that are still
on the fixed period there is no floating component to the interest rate, so we set r;;, = 0
and y; equal to the total note rate during the fixed period. As described in Section 1.4.1,
occasionally a life or period interest rate cap will bind, causing the mortgage rate at reset
to be something other than the relevant index value plus the constants. In those cases, we
assign 7;¢ = m;; — y;, where m,, is the mortgage note rate equal to the binding threshold of
the relevant cap or floor. We therefore assign differences in the total mortgage note rate due
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to binding caps and floors to differences in the floating portion of the rate, while keeping the
fixed portion of the rate constant.

There exist some loans which are floating on the conversion date but which have not had
a rate reset since the conversion date. For example, a loan which resets every 12 months and
which reset in June 2023 will not reset again until June 2024, meaning that it will not be
subject to the LIBOR-SOFR conversion until that date. Other loans exist which reset soon
after the conversion date but which have a long enough lookback period such that the new
rate following the conversion date is based on a value of LIBOR prior to the conversion. From
the perspective of modeling the value transfer, the cash flows given the fair spread adjustment
x* and the Fed-imposed adjustment x are identical until the first reset which references Term
SOFR instead of LIBOR. Therefore, for floating loans which have not yet reset to a Term
SOFR rate, we let r;; = 0 and y;. When the loan observes its first post-conversion rate reset
which references Term SOFR instead of LIBOR, we revert to the usual characterization of y;
and 7; .

1.3.2 Prepayment and Default

In addition to the mortgage note rate, prepayment and default play a key role in determining
the magnitude of mortgage cash flows. To capture prepayment and default along each
simulated path, we follow Fuster and Willen (2017) and use a hazard model for prepayment
and default given by Equation 1.5 for each n € {prepayment, default}.

R (X 1) = ho(8) " (Xit-18") (1.5)

The specification and calibration of the hazard model in Equation 1.5 is discussed in
Section 1.5.1. Along a simulation path, we our calibrated hazard model to determine
probabilities of prepayment and default, which are used to simulate loan prepayment and
default behavior. At each given time step, we draw a random number z;, for each loan from
the standard uniform distribution over [0, 1]. The outcome for a loan in date ¢+ 1 is then as
follows:

Tig < RPPW(t 411X ,) Loan 4 prepays
@iy > 1 — haefult (g 1| X; ) Loan i defaults
Tig € (RP"P¥ (¢ +1|X;,), 1 — h9™ (¢t + 1X;,)) Loan ¢ makes a regular payment

When comparing cash flows across alternative interest rate spread specifications, we want
to compare the value transferred while holding prepayment and default behavior constant.
In our specification this is only relevant for default as our model for prepayment will not
change with alternative values of a constant spread. The loan’s LTV is impacted by the
spread through alternative amortization schedules implied by different interest rates. In
our simulation we track cash flows assuming that the default probabilities are given by our
alternative spread adjustment z* estimated in Section 1.5.3. When comparing results across
a grid of feasible values for z*, we use the same monthly draws of z;; to simulate prepayment
and default for each alternative fair spread adjustment within a given simulation.
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1.3.3 Modeling Cash Flows

Given the mortgage note rate m;; = r;; + v;, we now discuss how mortgage cash flows are
determined, and how they are divided into fixed and floating portions. Along each simulation
path, we start by determining the value of a fully-amortizing payment in case the loan does
not prepay or default. Let B;; be the ex-payment balance of loan ¢ on date ¢. Suppose loan
7 has 7; months remaining until maturity. While mortgage rates are quoted on an APR
basis, assume that r;, and y; are expressed as the mortgage rate on a monthly basis instead.
According to standard mortgage amortization rules, a full payment Py, is given by

Bi(ris + yi)
L= (14 +y)™

At each date t along a simulated path there exist known probabilities for loan i’s pre-
payment and default in date ¢ + 1 given by Pr(prepay,,,,) = p1(Xi;) and Pr(default; ;) =
pa(Xi ). Section 1.3.2 describes the determination of the functions p; and ps. Given these
probabilities, random draws are used to determine if the loan prepays or defaults at date ¢
along a given simulation path.

The date t + 1 cash flow and balance of the loan will depend on whether the loan prepays
or defaults. From ¢ to t + 1, the loan will accrue interest and then reduce balance from
either prepayment, default, or the regularly-amortizing payment. Let 1, indicate default, 1,
indicate prepayment, and 1, =1 — 1, — 1, be the indicator for no default nor prepayment
between date ¢ and date ¢ + 1. Then given the date ¢ ex-payment balance B, ;,

Pi7t+1 — (16)

Biwy1 =1, [Biy(14+7riy +vi) — Prya] + 1,0+ 1,0

- Bz‘,t -1, [Pt+1 - Bz‘,t(rz‘,t + yz)] - ]lpBi,t - ]lde‘,t (1-7)
~ ~ ~—— ~——
scheduled principal reduction prepayment default

In our analysis, we assume that there is no partial prepayment and that default is
instantaneous, such that there is no delinquency period. Therefore, Equation 1.7 assumes
that prepayment and default both result in setting the loan balance to zero. The scheduled
principal reduction is only realized in case there is no prepayment or default.

We can then express the cash flow at date t+1 in each case: prepayment, default, or
the regularly amortizing payment. In case of prepayment, we assume that the loan accrues
interest between date ¢ and date ¢ + 1, at which point the total balance is paid off. The
cash flow from prepayment is given by By(1 + r;; + v;). In case of default, we assume that a
constant portion of the date t balance is recovered; let v be the recovery rate. Putting it all
together, we have

CFy1=1,P +1gyB + 1,By(1 + 73y + 1) (1.8)

For loans that are fixed or have not yet reset since the conversion (i.e., loans where
ri+ = 0), we use Equation 1.8 to model the total monthly cash flow for a given loan along a
simulation path. For loans that are floating and have had a rate reset since the conversion
date (i.e., loans where r;; # 0), we can expand the cash flow expression to divide it into a
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component based on the floating rate and another component that contains the remainder of
the cash flow.

CFo1 = 1,Py + 1gy By + 1,By(1 + 750 + ui)
= By(riy +vi) + 1, [Py — B(rie + vi)| + LaBy(y — riy — vi) + 1, B,

=Bi(1+riy) — B+ B + 1, [Piy1 — By(rig +yi)] + LaBi(y — 1oy — vi) + 1,By
(1.9)

The algebra between the first and third lines in Equation 1.9 allows us to write a component
of loan 4’s date ¢ + 1 cash flow that is determined solely by r; ;. We will treat this component
separately from the remaining terms in discounting these cash flows back to the conversion
date.

Equation 1.9 demonstrates that as of date ¢, a Term SOFR-indexed loan can be thought
of as a portfolio of two one-period loans: one which pays the Term SOFR rate, and the other
which pays the remainder of the monthly payment accounting for prepayment and default
cash flows. The portion of the cash flow indexed to Term SOFR is the floating component of
interest payments. In Appendix 1.B we showed that under the assumption of no prepayment
or default, the appropriate one-period discount rate for this floating cash flow is Term SOFR.
We will account for these hazards using a premium for prepayment and default which we will
call 1. The other component of the cash flow which is not strictly indexed to Term SOFR we
will discount at the risk-free rate as well as the premium for prepayment and default risk.

Let f,,, be the date 0 implied futures rate for risk-free cash flows between date t and
t 4+ 1. We will use the futures rates to discount future cash flows along each simulation
period-by-period in order to capture their projected value as of date 0. Recall that r; is the
date t value of 12-month Term SOFR. For floating loans that have reset to a Term SOFR
index, we can write the date ¢ value of the date t 4+ 1 cash flows expressed in Equation 1.9.

Bi(14 1) By — By 4+ 1, [Py — B(rig +y)] + LaBe(y — riy —y) + 1,5,
(L+ 7)1+ p) (L+ ) (L + p)

Vt<CFt+1) =

(1.10)

The first term represents the floating component of the cash flow, discounted by Term
SOFR and adjusting for the risk of prepayment and default. The second term is the fixed
component of the cash flow, discounted by the risk free rate and adjusted for the risk of
prepayment and default.

For loans which are fixed or have not reset to Term SOFR since the conversion date, recall
that we set r;; = 0 and that the fixed component of the interest rate y; is set equal to the
total interest rate. Therefore the date ¢t + 1 cash flow given in Equation 1.8 has no floating
component, and the value in date ¢ is simply given by

1, Py + 1gyBy + 1,Bi(1 + 73y + yi)
(1+ f£t+1)(1 + 1)

This formulation allows for the term premium inherent in fgt 41 as well as the premium
for prepayment and default risk. For each of these one-period discounted cash flows expressed

Vi(CFiq1) = (1.11)
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in Equations 1.10 and 1.11, we iterate and discount this projected value back to date 0 using
the risk free rate as well as 1 + p. This results in a date 0 value of the date £ + 1 cash flows
for mortgage ¢ given by
Vi(CFy1) ~ VilCFi4)
—1 -
Hizo ( 0 (14 M)) 7"())c,t(l + 1)t

Vo(CFiy) =

where r(’;t is the risk free rate between date 0 and date t.

The total value of the mortgage at date 0 (the conversion date) is then the sum of the
present value of its forecasted cash flows, averaged across multiple simulations. The difference
between this value under the value-preserving constant adjustment z* and the Fed-imposed
constant adjustment x constitutes a value transfer due to the LIBOR-Term SOFR conversion.

1.4 Data Description

For mortgage data we use Black Knight’s McDash dataset. McDash contains mortgage
origination data such as LTV, loan size, and 3-digit ZIP geography. Borrower characteristics
such as DTT and FICO are also included. For ARMs, there is information detailing the fixed
rate period, the frequency of loan resets, and any caps and floors for the loan. The relevant
index is also encoded, however, the tenor of the index is not. For example, the data indicates
that a loan is indexed to LIBOR but not 12-month LIBOR. As such, we assume that the
tenor of the index corresponds to the reset frequency, so that a LIBOR-indexed loan resetting
every three months is indexed to 3-month LIBOR?.

McDash also reports monthly performance data, including the unpaid balance and the
current interest rate of the loan each month. Our sample consists of first-lien 30-year LIBOR-
indexed ARMs that remained open as of June 30, 2023, the date LIBOR was discontinued.
We also impose that the loans reset every 12 months and are therefore likely to have been
indexed to one-year LIBOR. This assumption allows us to compare the margin for these loans
with the margin on Treasury-indexed ARMs, for which the one-year rate is the most common
index. We also impose that the mortgages be prime mortgages® for a primary residence, that
they are conventional loans without private mortgage insurance, that they are not balloon
mortgages, and that loan LTV as of origination does not exceed 100%. We do not include
interest-only (IO) loans in our main specification. This set of restrictions ensures that we
observe a homogeneous population of loans. Based on the current criteria, our final dataset
includes 99,986 mortgages, with a total principal balance of $50.5 billion as of the conversion
date.

Table 1.2 shows descriptive statistics for open loans as of the conversion date. Of the
loans included in this sample, only 39% are floating. This helps to explain the relatively
low average interest rate as of the conversion date. Spread at origination is determined by
subtracting the average Fannie Freddie rate during the month of mortgage origination from

3This assumption appears to hold in the data by inspection when comparing the reported interest rate of
a loan to the corresponding tenor of LIBOR plus the loan-specific margin.

4Subprime loans fell in popularity following the 2008 recession and observed high rates of prepayment and
default; as such, very few LIBOR-indexed ARMs remained open as of June 30, 2023.
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Table 1.2: Main Sample Descriptive Statistics

| Mean Std Dev.  Min Median Max
Original Interest Rate (%) 3.30 0.80  1.00 3.10 10.20
Interest Rate on Conversion (%) 3.90 1.30  1.40 3.50 8.60
ARM Margin (%) 2.20 0.20 0 2.20 5.10
Original Loan Amount ($1,000s) 632.33 607.96 15.00  485.00 30,000.00
Unpaid Balance at Conversion ($1,000s) | 505.34 544.08  1.00  355.00 27,181.00
Original LTV (%) 64.30 17.30  1.50 69.60 100
Loan Age At Conversion (Years) 7.54 4.87  0.92 6.17 25.17

the original loan rate. It is unsurprising that the mean spread at origination is negative. This
is because most mortgages included in the calculation of the Fannie Freddie are FRMs which
typically have a higher interest rate than ARMs.

Figure 1.2: Time Until Floating for Fixed LIBOR Loans
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Note: 248 loans with more than eight years until floating are not shown to enhance readability.

For the 61% of loans that are not yet floating as of the conversion date, there is significant
heterogeneity in the time until floating. Figure 1.2 shows a histogram of the time to float in
years. These loans are significantly weighted towards floating soon: 42.2% of the loans which
have not floated yet will float within three years if not prepaid or defaulted before then. This
is important for our analysis because loans that are not floating will not be impacted by the
transition from LIBOR to Term SOFR until they do float. We expect the impact of the
transition to be smaller for loans that are far from floating.

Figure 1.2 also shows that there is a mass of loans with four or seven years until floating.
These correspond to ARMs originated during the surge in refinancing activity around the
COVID-19 pandemic and which are three years matured by the LIBOR conversion date.
Chapter 2 shows that over 90% of ARMs originated during that time were ARMs with a
seven- or ten-year fixed rate period.

The duration of the fixed period is encoded in months by McDash and often does not
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cqual a multiple of twelve months, suggesting that the McDash encodings may be based on
differing fixed rate starting points. To categorize the loans into discrete year buckets for
descriptive statistics, we flag loans as having a fixed rate period of less than 24 months, equal
to 24 months, between 25 and 36 months, between 37 and 60 months, between 61 and 84
months, and greater than 84 months. We will call these 1/1, 2/1, 3/1, 5/1, 7/1, and 10/1
loans, respectively®.

Table 1.3: Summary Statistics by Loan Fixed Period

Fixed Period  Count  Original Loan Amount ($K) Principal (3K) Loan Age (Years) Margin (%) LTV (%)

| Year e 438.48 333.14 9.82 2.32 70.03
ca 48 (384.84) (326.50) (6.24) (0.10) (17.73)

5 Vears . 113.00 60.00 19.42 3.25 97.72

(—) (—) ) —) (—)

353.30 219.39 17.02 2.25 69.04

3 Years 1,626 (562.55) (494.60) (4.04) (0.49) (15.88)
401.08 278.88 11.41 2.22 64.50

5 Years 21,467 (489.78) (425.93) (5.82) (0.27) (17.75)
678.75 546.65 6.52 2.25 63.80

7 Years 47,708 (582.52) (519.95) (3.70) (0.10) (17.25)
755.65 633.11 5.65 2.25 64.37

10 Years 27,939 (684.00) (612.10) (3.25) (0.06) (16.90)

Note: Means are displayed with standard deviations below in parenthesis.

Table 1.3 shows summary statistics for loans within each category of fixed rate period
length. Note that there is only one loan with a fixed rate period of exactly 24 months.
Chapter 2 shows that this loan type was popular prior to 2008 and that its rate of default is
significantly higher than for other kinds of ARMs. As discussed in Section 1.5.1, 3.6% of loans
in our training sample are 2/1 ARMs and are treated separately in the logit estimation. As
such, we maintain this categorization here despite the sparse representation of that category
in loans as of the conversion date.

We find substantial heterogeneity in loan characteristics both within and between loan
categories. For example, loan size differs by length of fixed period, with longer fixed periods
tending to correspond with larger loans. An exception to this observation is the 1/1 loans,
which are larger and have higher margins. The 5/1, 7/1, and 10/1 loans are younger, reflecting
a shift away from shorter fixed rate periods in new mortgage origination.

1.4.1 Rate Caps and Floors

Adjustable-rate mortgages typically include both per-period and lifetime constraints on
interest rate adjustments. Per-period rate caps and floors limit the extent to which the
interest rate on a mortgage can change from one reset period to the next. For example, a

5To get a sense for the importance of this assumption, note that 99.90% of loans have fixed rate periods of
exactly 12, 24, 36, 60, 84, or 120 months or one month less than those benchmarks, suggesting that very few
loans could potentially be incorrectly sorted by this mechanism.
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loan with a current interest rate of 5% and a per-period cap of 2.5 percentage points would
be restricted to a maximum rate of 7.5% at the time of reset, even if the index rate plus the
margin would otherwise imply a higher rate. Lifetime caps and floors, in contrast, define
absolute upper and lower bounds on the interest rate over the life of the loan, ensuring
that large fluctuations in the underlying index do not drive the mortgage rate beyond these

predefined thresholds.

Table 1.4: Summary of Loan Caps and Floors

Life Cap Life Floor Period Cap Period Floor

Fraction of Loans with This Restriction 99% 100% 100% TT%
Most Common Value 5% 2.25% 5% 2%
Fraction of Loans with Most Common Value 88% 74% 49% 15%

Table 1.4 contains descriptive statistics for caps and floors in the data. We find that most
loans have both lifetime caps and floors, as well as period caps. Period floors are far less
common and are more widely distributed than other caps and floors, with the most common
period floor only representing 15% of the sample. Note that the life caps and floors are
represented as relative to the original interest rate, so a 5% cap imposes a maximum interest
rate of 5% above the starting rate rather than an absolute cap of 5%. Period caps and floors
are relative to the current rate on a given mortgage.

McDash appears to include both absolute lifetime caps as well as lifetime caps relative to
the starting rate. If the reported lifetime cap is exactly 5% larger than the original interest
rate, we assume that that loan has a lifetime cap relative to the initial rate of 5%. We do so
because of bunching at 5% in the distribution of the reported lifetime cap minus the original
interest rate. Additional controls for data quality include multiplying the reported cap or
floor by the appropriate power of 10 for some loans with reported caps and floors less than
10 basis points, and dropping period rate floors less than 2% because for these loans, the
period rate floor is equal to the original interest rate minus the margin for the loan and is
not credible.

1.4.2 Timing of Rate Resets

In addition to interest rate caps and floors, the timing of rate resets introduces further
complexity in modeling adjustable-rate mortgage payments. ARM contracts typically specify
both the specific day of the month on which the new interest rate takes effect and a "lookback
period," which determines how far in advance the index rate is observed for the reset. For
instance, a loan scheduled to reset on February 15 with a 45-day lookback period would
reference the index rate from January 1 when determining its new interest rate.

The McDash dataset does not provide information on the exact reset date within each
month for individual loans, preventing differentiation between mortgages that reset at the
beginning versus the end of the month. Given this limitation, we assume that all resets occur
simultaneously at the beginning of each month. Consequently, we downsample our projected
Term SOFR values to a monthly frequency. Additionally, we approximate the lookback effect
by assuming that loans with a lookback period of 30 days or less reference the index rate
from the preceding month and those with a lookback period of 31 to 60 days use the index
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rate from two months prior. In our data, 76% of loans are assigned a two-month lookback
and 24% are assigned a one-month lookback.

1.5 Model Calibration

In this section we describe the calibration of the model used to project cash flows. This
includes the estimation of the logit models for prepayment and default described in Section
1.3.2 and the calibration of the dynamics for the Nelson-Siegel model for the yield curve. We
also describe the method we use to identify a constant spread over Term SOFR which is
consistent with market valuation. Finally, we derive an estimate of the premium for the risk
of prepayment and default, p.

1.5.1 Logit Hazard Model

To estimate the logit model for prepayment and default hazard rates described in Section
1.3.2, we use McDash mortgage performance data. Rather than select a set of mortgages
and estimate the model on the resulting panel of data, we select a time window and fit the
logit model to all open loans during that window subject to the same restrictions described
in Section 1.4.

Namely, we require loans to be LIBOR-indexed, first-lien 30-ycar ARMs. In addition,
we require the mortgages to be conventional without private mortgage insurance, to not be
balloon or 10 loans, and to have LTV less than or equal to 100%. Unlike in our main analysis,
we do not exclude loans which reset at frequencies other than one year. This bolsters the
amount of loans included in our analysis.

The baseline hazard h{(t) for prepayment and default in Equation 1.5 is the loan age,
which we specify as a polynomial in loan age for the first seven years, then an indicator for
loans aged eight through 15 years, followed by another indicator for loans older than 15 years.
This flexible specification permits granular variation in baseline hazard for younger loans,
where the data is rich, and acknowledges the noise introduced by older loans where there are
fewer observations.

We treat as default an event where a loan becomes 90 or more days delinquent® using
the Mortgage Bankers Association definition of delinquency, similar to the approach used in
Fuster and Willen (2017). Loans are classified as prepaid when the balance is set to 0 prior to
loan maturity. In case of prepayment or default, a loan is censored from the sample. Loans
are also treated as censored if they are transferred out of the data feed and performance
becomes unavailable.

To avoid overfitting the hazard model, we exclude the interest rate and the current spread
from the logit models for prepayment and default. The downward-sloping yield curve on the
conversion date was such that the rate on floating loans was at a historic high, as was the
spread between the current rate and the 10-year rate. While the current rate and the current
spread terms may be natural to understand as economic drivers of prepayment and default
behavior, logit models are unable to capture their dynamics at unusually high levels. As
such, they are not included in our specification.

6Results are similar when using alternative thresholds for mortgage delinquency.
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The window we select for our analysis includes monthly observations for all loans which
were not prepaid or defaulted at any point between January 2015 and December 2019. This
window is selected to represent a time in which there is some variability in the interest rate
yet no salient financial crisis likely to have driven abnormal aggregate prepayment or default
behavior. We allow loans which originate during this window as well as loans which originated
before the sample window and have not prepaid or defaulted by January 2015 to be included
in our sample in order to capture the prepayment and default behavior across the entire
lifetime of a loan.

Table 1.5: ARM Characteristics Within the Logit Data

Fixed Rate Period Length Reset Frequency Once Floating
Value Freq. % Value Freq. %
1 Year 1,299,667 6.83 1 159,019 0.84
2 Years 681,628 3.58 6 1,094,465 5.75
3 Years 498,860 2.62 12 17,783,496 93.42
5 Years 5,067,181 29.24
7 Years 7,896,302 41.48

10 Years 3,093,342 16.25
Total 19,036,980 100.00 Total 19,036,980 100.00

Table 1.5 describes the distribution of the length of the fixed rate period as well as the
frequency of interest rate resets once floating for the ARMs in our analysis. We find that the
vast majority of loans in our analysis are loans which reset every 12 months, with only 6.58%
of loans resetting at other frequencies. There is a large mass of loans with a fixed rate period
of exactly 24 months, suggesting that these loans merit different treatment in our logit model.
As such, we assign different indicators to loans within each of the fixed rate period categories
in Table 1.5 in our logit estimation.

Table 1.6: Descriptive Statistics for Logit Sample

| Mean Std Dev.  Min Median Max
Original Interest Rate (%) 3.64 1.37  1.00 3.25 15.89
ARM Margin (%) 241 0.80  0.02 2.25 9.99
Original Loan Amount ($1,000s) | 477.86 443.99 10.00  368.00 45,000.00
Original LTV (%) 66.53 16.81  0.58 71.82 100.00
Spread At Origination (%) -0.86 1.09 -6.28 -0.80 10.70

The loan characteristics from the pool of loans used to estimate logit are similar to the
characteristics of the loans impacted by the LIBOR-SOFR cramdown described in Section
1.4. Table 1.6 displays additional descriptive statistics for the loans used to estimate the logit
models for prepayment and default. By comparing these numbers with those contained in
Table 1.2, we see that the loans used to estimate the logit have similar LTV, starting interest
rate, origination spread, and margin to those from our main pool of ARMs. The average loan
size at origination is larger for our main sample, but we attribute this to the increased house
price for loans which originated after this window.
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Table 1.7: Logit Regression Estimates for Prepayment and Default

Variable Prepayment Default
2 Year Fixed Period —0.724*** 0.899***
(0.0230) (0.0392)
3 Year Fixed Period —0.00621 0.756***
(0.0153) (0.0392)
5 Year Fixed Period 0.168*** 0.469***
(0.00918) (0.0338)
7 Year Fixed Period —0.128%** 0.392%**
(0.00953) (0.0391)
10 Year Fixed Period —0.407*** 0.285%**
(0.0106) (0.0505)
Spread At Origination —3.520%** 8.289***
(0.340) (0.575)
(Spread At Origination)? —101.0*** —29.54*
(11.88) (14.02)
(FICO at Origination) /100 0.180*** —0.495***
(0.00491) (0.00824)
log Loan Size 0.103*** 0.00464
(0.00280) (0.0115)
Origination LTV —0.00895 1.370***
(0.0641) (0.377)
(Origination LTV)? 0.136* —1.564%**
(0.0548) (0.265)
Origination LTV = 80% —0.0154** —0.0237
(0.00587) (0.0172)
Full Documentation —0.0417*** —0.430***
(0.00581) (0.0235)
No Documentation —0.0828*** —0.0196
(0.00870) (0.0255)
Cash Out Refi —0.0700*** 0.209%**
(0.00682) (0.0301)
Non-Cash Out Refi —0.0711*** —0.0222
(0.00448) (0.0153)
Condo —0.0441*** —0.259***
(0.00488) (0.0219)
(Loan Age < 7) x Loan Age 0.0996*** 0.877***
(0.00951) (0.111)
(Loan Age < 7) x Loan Age? 0.0347*** —0.120%**
(0.00290) (0.0299)

(Loan Age < 7) x Loan Age®  —0.00412***  0.00928"**
(0.000251)  (0.00233)

Loan Age € (7,15] 0.431*** 4.238***
(0.0108) (0.121)
Loan Age > 15 0.398*** 4.632***
(0.0402) (0.137)
Current LTV 3.282%%*
(0.165)
Current LTV Squared —1.010***
(0.113)
Constant —7.255%** —8.552%**
(0.0561) (0.229)
Observations 19,036,980 19,036,980
Pseudo R? 0.184 0.014
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Figure 1.3: Prepayment and Default Hazard Rates in Logit Training Data
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Table 1.7 shows the estimated logit coefficients. The baseline loan is a 1/1 ARM with
incomplete documentation which is not for a condo and not a refinancing loan. We include
an indicator for the LTV at origination being equal to 80%. This addresses the concern that
first-lien mortgages with LTV equal to 80% may be likely to take a second mortgage to target
the desired amount of debt without being required to pay for private mortgage insurance. We
find that when this constraint binds, a mortgage is less likely to prepay, which is consistent
with the hypothesis that when LTV is bound at 80%, the borrower is likely to have a second
lien on the mortgage. We also find that we are able to capture a phenomenon similar to
the well-documented burnout for mortgage prepayment (for example, see Richard and Roll
(1989)) in that very mature loans are less likely to prepay than younger loans, despite the
reduced principal remaining on the loan.

We find that our model for prepayment is able to describe a larger proportion of the
observed prepayment behavior than the model of default can for default behavior. There
may be several reasons for this finding. One possible explanation is that we have omitted or
imprecisely measured variables which are important predictors of default. For example, debt
to income ratios as reported by McDash only include the debt burden of the mortgage and
not of other debt obligations. In addition, the measure we use for LTV does not include other
liens on the property”. While these imprecisely measured variables appear in the models for
both prepayment and default, we would expect the measures of the debt burden to matter
more for models of prepayment than default.

Figure 1.3 displays the aggregate prepayment and default behavior for all loans in our
sample throughout the window of observation. This highlights another possible reason for
the lower pseudo R? in our model for default relative to prepayment. While throughout the
window the rate of prepayment is between 11.7% and 33.2% of all open loans per year, the

"McDash does report a combined LTV field, but the field is very sparsely populated.
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rate of default is only between 0.7% and 2.1% per year. King and Zeng (2001) demonstrate
that low rates of the outcome of interest in logistic regressions can result in a bias of the
estimated coefficients. In case of default, we set the recovery rate v to 70%.

We add a loan’s current estimated LTV to the logit specification for default because of its
important role in predicting default rates. Homeowners with a high equity stake are highly
unlikely to default on a loan because of the forfeited equity that would result.

To estimate the current LTV for a loan we use the loan’s current unpaid balance divided
by an estimate for the current value of a home. Without regular transactions we cannot
observe the market value of a property, so we estimate the value using the annual FHFA
All-Transactions House Price Index at the three-digit ZIP level. We used the annual data set
instead of the quarterly for its increased historical coverage. The house price indices are then
linearly smoothed throughout each year and matched to the McDash monthly performance
data. Given the house price index, we can estimate

L, Lo Vo 1
— = —= X — X L — 1.12
VoV v, ML (1.12)

where ‘L/—g is LTV at origination, % is determined using the house price index, L; is the current

unpaid balance, and L is the original loan amount. For our simulation exercise, we project
house prices to grow at the mean house price growth rate over the last five years in the loans’
three-digit ZIP area.

Figure 1.4: Forccast Prepayment and Default Rates
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Figure 1.4 shows the forecast annualized hazard rates for prepayment and default for
representative loans with characteristics set to the median values of the characteristics of
the loans converted from LIBOR to Term SOFR. Prepayment and default rates have clear
spikes where the age crosses indicator thresholds included in the logit specification. LTV
decreases over time for these loans due to amortization and projected house price growth,

which drives the downward-sloping rates between the jumps in the default rate. There is
clear heterogeneity in the hazard rate for loans of different fixed rate periods, with the five,
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seven, and ten year fixed period ARMs having the lowest default rates. Most of the loans in
our main sample have fixed period lengths of five, seven, or ten years, suggesting that default
is not a crucial driver of our results.

1.5.2 Nelson-Siegel Factor Dynamics

Calibration of the dynamic Nelson-Siegel model we use to simulate the evolution of the yield
curve dynamics requires specifying an initial point to capture the yield curve on the day of
the conversion and parameterization of the factor dynamics described in Equation 1.2.

We estimate the starting point Xy by minimizing the mean squared error between the
Nelson-Siegel implied yield curve and a bootstrapped treasury yield curve on the date of the
conversion®. This exercise results in

0.034
0.018
Xo= 10,033
0.512

For the factor dynamics, we target a few key properties. The first is that mean reversion
is not too fast, so that the model predicts reasonably slow changes in the yield curve. We also
target a long-run rate of around 3.5% and a short rate of 2.5%, allowing the yield curve to be
upward sloping. For the factor controlling the curvature, we set parameters to that there is
occasionally a hump-shaped yield curve in the long-run distribution of simulated yield curves,
and that the hump generally falls between one and five year maturities. Assuming the time
step in Equation 1.2 is monthly?, we set

005 0 0 0 0.035 0.001 0 0 0
s_ |0 005 0 0f _|=001f . |0 0002 0 0
=lo o o010 T 0015/ =1 o0 0 0005 0

0 0 0 1 1.67 0 0 0 0.1

where ;11 ~ N(0, 1) is a multivariate distribution. This dynamic specification allows us to
simulate the yield curve’s evolution following the conversion date.

1.5.3 Fair Spread Candidates

The constant spread adjustment x imposed by the Fed and reported in Table 1.12 is based on
the median spread between LIBOR and proxies for Term SOFR over a five-year window. For

8Specifically, we minimize the sum of squared errors between monthly observations for the first five years
of the model-implied yield curve and a yield curve bootstrapped using T-bill data for short maturities and
constant maturity treasury data for longer maturities. By focusing on the first five years, we emphasize
goodness of fit for the shorter maturities matching mortgage duration. We bootstrap the yield curve by
assuming that discount factors are log-linear in the maturity.

9The parameters are displayed on a monthly frequency to anhance readability. However, to simulate
Term SOFR following the methodology in Equation 1.4, we must simulate daily instances of the yield curve.
Assuming 30 days per month, we can easily map the monthly parameters into daily parameters using the

identities dqay = 1—(1— 6m0mh)1/ 30 and Oday = Omonth/ 11:((11:—%. This mapping preserves the conditional
ay
distribution of X;;1 given X; whether ¢ + 1 represents a single monthly draw or 30 daily draws.

36



Figure 1.5: ARM Treasury and LIBOR Index Share Over Time
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contracts indexed to one-year LIBOR, the spread adjustment x = 71.513 basis points. This
methodology does not necessarily capture the fixed spread that a market applies to newly
issued Term SOFR contracts in comparison with LIBOR contracts.

The ideal thought experiment is to observe two identical mortgages issued to two identical
borrowers. One borrower is assigned a mortgage indexed to Term SOFR; the other is issues
a mortgage indexed to LIBOR. To the extent that the market cares about the level difference
and different risk sensitivities of Term SOFR and LIBOR, there will be a difference in
the margin applied to each mortgage. Specifically, because LIBOR incorporates more risk
premiums than Term SOFR, a larger margin would be applied to the Term SOFR-indexed
ARM than the LIBOR-indexed ARM. The size of the difference in margins represents the
premium required by the market for a mortgage being indexed to Term SOFR versus LIBOR.

In principle we could approximate this thought experiment by taking a pool of LIBOR
and Term SOFR-indexed ARMs and regressing the ARM margin on loan characteristics and
an indicator for a Term SOFR index. However, this analysis is complicated by the fact that
new ARMs are not indexed to Term SOFR. According to a Freddie Mac fact sheet,'® GSEs
only purchase new SOFR-indexed loans if they are indexed to the backward-looking 30-day
average SOFR rate published daily by the Federal Reserve Bank of New York.

To get around this limitation, we use Treasury-indexed ARMs instead of Term SOFR-
indexed ARMs as a baseline to determine a fair constant spread. Treasury-indexed ARMs are
a well-suited substitute for Term SOFR-indexed ARMs because they share the same pricing
property described in Appendix 1.B. Namely, the floating component of their cash flows will
also price at par absent prepayment and default because otherwise, there is an arbitrage
opportunity available through investing in risk-free securities.

Figure 1.5 shows the proportion of new ARMs indexed to the one-year tenors of LIBOR
and the Treasury rate which fit the restrictions described in Section 1.4. Our method requires
that both LIBOR-indexed and Treasury-indexed loans are issued concurrently. We find that

Whttps://sf.freddiemac.com /working-with-us/origination-underwriting /mortgage-products /sofr-indexed-
arms
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this is the case, especially starting after the year 2000. In using historical data to estimate
the spread between Treasury- and LIBOR-indexed ARMs, we impose that there are at least
50 LIBOR~indexed ARMs and 50 Treasury-indexed ARMs originated during each included

quarter. Our sample window includes loans issued between July 2001 and March 2021.

ARM Margin; = a + SX; + (i) + d1[Treasury-Indexed ARM(7)] + ¢; (1.13)

We use Equation 1.13 to isolate the different spread applied to Treasury-indexed ARMs
versus LIBOR-indexed ARMs. We control for mortgage characteristics such as log of loan size,
credit score at origination, LTV at origination, and fixed effects for the quarter of origination.
0 represents the mean spread over time between Treasury- and LIBOR-indexed ARMs after
controlling for loan characteristics and origination quarter. To estimate the equation, we
take the full set of ARMs in McDash including ARMs not indexed to LIBOR but applying
the other restrictions applied to our main sample of LIBOR loans. To address outliers, we
impose that the ARM margin be non-negative and less than or equal to 5%.

Table 1.8: Estimates for Treasury-Indexed Margin and Initial Rate Premiums

ARM Margin Initial Interest Rate

Treasury-Indexed Indicator — 3.09 x 107 3*** 2.46 x 10~ 4**
(5.20 x 1079) (1.18 x 107°)
Original LTV 2.68 x 1075 2.61 x 1073+
(1.42 x 1079) (3.21 x 107°)
Log Loan Size —T7.74 x 1075 —6.83 x 1074+
(3.50 x 1079) (8.00 x 1079)
Original Credit Score —5.54 x 1077 —1.94 x 1072%**
(4.85 x 1078) (1.10 x 1077)
Constant 2.53 x 1072 8.33 x 102+
(7.30 x 1079) (1.65 x 10~%)
Origination Quarter FE v v
R? 0.2140 0.6528
Observations 2,051,525 2,051,496

Robust standard errors in parentheses
**p < 0.01, **p < 0.05, *p < 0.1

Column 1 in Table 1.8 displays the regression estimates for Equation 1.13. We find that
our point estimate for the average additional spread applied to Treasury-indexed loans relative
to LIBOR~indexed loans is insensitive to the inclusion of origination quarter fixed effects.

This analysis relies on a few key assumptions. The first is that assignment to a mortgage
index is quasi-random, so that loans indexed to LIBOR and loans indexed to the Treasury
rate have similar risk. Gupta and Hansman (2021) argue for quasi-random index assignment,
showing that most of the variation between ARM indices comes from variation in the lender,
with different lenders specializing in one index. Bucks and Pence (2008) use survey data
to show that most ARM borrowers do not know their mortgage terms, which supports our
random-assignment assumption, as ARM borrowers are unaware which index pertains to
their loan.
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Figure 1.6: Premium for Treasury-Indexed ARMs Over Time.
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A second assumption is that the difference in pricing between LIBOR-~ and Treasury-
indexed ARMs is only in the index. It is possible that lenders assign the same margin to
ARMs with different indices but adjusting for level difference in the index thorough differences
in the introductory rate during the fixed rate period. To test this assumption, we regress the
initial interest rate on mortgage characteristics and an indicator for Treasury-indexed ARMs,
as in Equation 1.13 with the left-hand side being replaced by the initial interest rate. Column
2 of Table 1.8 presents regression results indicating a 2.46 basis point premium on the initial
rate for Treasury-indexed ARMs relative to LIBOR-indexed ARMs. We conclude that while
statistically significant, this premium is not economically significant and our assumption that
the only pricing adjustment is through the index is valid.

An additional assumption is that the difference in interest rate margin applied to LIBOR-
versus Treasury-indexed ARMs at origination is the same as the difference in margin which
would be applied should the loan refinance partway through its life. We also assume that
there is a time-invariant spread between the margins on loans indexed to each of these indices.
We relax this assumption to estimate the variation in the spread over time.

ARM Margin, = a + BX; + (i) + 6,(i)1[Treasury-Indexed ARM(i)] + &; (1.14)

Figure 1.6 plots our estimates for ¢,(¢) in Equation 1.14. We find substantial variation in
the premium required for Treasury-indexed ARMs over time. We find a large decrease in
the spread at the end of 2008, during the recession. We also find that there is no significant
spread since 2018, shortly after the end of support for LIBOR was announced in 2017. In our
main specification we rely on the 30 basis point constant spread adjustment estimated in the
left-hand panel of Table 1.8. In Section 1.6.3, we estimate the value transfer for alternative
values of a fair spread adjustment.
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1.5.4 Mortgage Risk Premium

In order to determine a range of appropriate values for p used in Equation 1.10, we can
simulate cash flows from representative mortgages. The fair p for each representative loan is
then one that sets the loan’s value at origination to 102% of par, using the valuation method
described in Section 1.3. Fuster, Lo, and Willen (2024) document that loans price at different
fractions of par across time. We pick 102% as our baseline and examine the sensitivity of our
results to alternative estimates for p.

To construct a representative loan on a given month, we must make choices about its
characteristics. For each month, we construct several loans which vary by loan size and
the duration of the fixed period. We allow loan sizes of $250,000, $500,000, $750,000, and
$1,000,000. We also vary the fixed-rate period such that each loan is either a 3/1, 5/1, 7/1,
or 10/1 ARM. The representative loans are indexed to one-year Term SOFR plus a 30 basis
point constant spread to closely reflect the estimated market value of the loans in our sample
post-conversion.

For each of these loans we set the rest of their characteristics at some common values.
LTV at origination is set to 80% and the margin is set to 2.25%. We need to make an
assumption about the house price growth rate, as we don’t assign the representative loan
to a specific ZIP code. However, we want a house price growth rate comparable with what
we expect as of the conversion date; as such, we set the house price growth rate for each
representative loan to the median of the average house price growth rates for the open loans
on the conversion date across the five years leading up to conversion. The starting interest
rate for each loan is set using the average new rate for ARMs originated that given month.

We must also specify parameters used in the Nelson-Siegel model to model cash flows
for these representative loans. We re-fit the Nelson-Seigel vector of parameters X, given the
origination date for these representative loans, and simulate the yield curve using the same
dynamics in Equation 1.2. Because we will price a range of representative loans across a
variety of origination dates, we will be able to assess within-pool heterogeneity of p on a
given date, as well as the stability of u for a specific representative loan if it originated in
different months.

Figure 1.7 shows the results of this exercise. The estimated mortgage risk premium varies
both within periods and across time. Within periods, most of the variation comes from the
length of the fixed-rate period: 10/1 ARMs correspond to the lowest values of u, while 3/1
ARMs correspond to higher values. This pattern is consistent with the decreasing risk profiles
associated with longer fixed-rate periods, as seen in Table 1.7 and discussed in Chapter 2. In
June 2023—the month of the LIBOR-SOFR conversion—our annualized estimates of p have
relatively little variation across loan class, ranging from 1.96% to 2.03%. In contrast with the
length of the fixed rate period, the size of the ARM has negligible impact on the estimate for
the mortgage risk premium pu.

Across time, the variation is substantial, but there is strong correlation between the
estimated mortgage risk premiums for different classes of ARMs. This variation over time
implies that we cannot identify a narrow range of p values for which mortgages consistently
price near 102% of par. In Section 1.6.2, we evaluate the value transfer across a range of
values, with our baseline results based on the average transfer using each estimated g on the
conversion date.

40



Figure 1.7: Estimates for Mortgage Risk Premium u
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1.6 Estimated Value Transfer

In this section we discuss our estimates for the value transfer implied by our baseline specifi-
cation. We then test the sensitivity of our findings to alternative calibrations. Specifically,
we consider the value transfer implied by different mortgage risk premiums p and alternative
fair constant spread adjustments. Our methodology for simulating cash flows allows for
prepayment and default, which options have their own value that we do not explicitly price.
We evaluate the importance of the loan caps and floors by testing the value transfer when
there are no caps or floors, and we test the value transfer implied by our model when there is
no chance of prepayment or default. Finally, we discuss extensions of our estimates to other
LIBOR-indexed loans which were converted when LIBOR was discontinued.

1.6.1 Baseline Results

Our baseline results are based on the assumption that a fair constant spread adjustment is
30 basis points and that p is based on our estimate from representative loans originated on
the conversion date. The value transfer we estimate is the value of the mortgage cash flows
under the Fed-imposed constant spread adjustment of 71.513 basis points minus the value
of the remaining cash flows under our estimated 30 basis point alternative constant spread
adjustment.

The first row of Table 1.9 shows our estimates for the total value transferred due to
the cramdown in our baseline specification. The total estimated value transfer under our
baseline specification is $248.73 million, which is 0.49% of the total balance of the pool.
Loans which are fixed as of the conversion date experience the smallest value transfers. This
is because the alternative constant spread adjustment only applies when a loan is floating, so
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Table 1.9: Value Transfer Estimates

Specification Aggregate Value Transfer Individual Value Transfer
Total % of Balance Floating Fixed
. 0.94% 0.48%

S 248. 4
Baseline $248.73 M 0.49% (0.23%) (0.31%)
Alternative Specifications

. . 1.17% 0.60%
20 Basis Point Spread $309.09 M 0.61% (0.28%) (0.39%)
. . 1.40% 0.72%
10 Basis Point Spread $369.61 M 0.73% (0.33%) (0.46%)
) 0.99% 0.53%
No Caps/Floors $274.13 M 0.54% (0.20%) (0.32%)
2.61% 2.58%
No Hazards $1.28 B 2.54% (0.66%) (0.58%)

Note: Standard deviations are displayed below means in parentheses.

the discounting applied to the cash flow projections makes the difference smaller for floating
loans. In addition, loans which are not yet floating have a high likelihood of prepayment prior
to floating. A loan which prepays prior to floating to a Term SOFR rate will not undergo a
value transfer.

To better understand the drivers of different sizes of value transfer, we partition the pool
of loans into two groups based on whether the loan is fixed or floating as of the conversion
date. Within each of these two groups, we compare the means and standard deviations of the
value transfer between loans within the highest and lowest quartiles of age, margin, credit

score, and LTV.

Table 1.10: Value Transfer by Loan Characteristic Quartile

Fixed Loans Floating Loans
Variable Lower Quartile Upper Quartile | Lower Quartile Upper Quartile
Loan Age 0.224 0.888 0.897 0.774
(0.083) (0.230) (0.230) (0.121)
ARM Margin 0.479 0.481 0.947 0.945
(0.312) (0.313) (0.228) (0.227)
Original Credit Score 0.592 0.421 0.936 0.945
(0.330) (0.294) (0.227) (0.228)
Conversion LTV 0.629 0.284 0.965 0.908
(0.346) (0.180) (0.244) (0.215)

Note: Means displayed with standard deviation below in parentheses. All numbers are reported as percentages
of principal. Based on 100,000 simulations using the baseline specification.

Table 1.10 shows the results of this analysis. A few notable relationships stand out. For
fixed loans, older loans have a larger value transfer. This is because they are closer to floating
and thus the difference in cash flows between the Fed-imposed spread and our alternative 30
basis point spread is discounted less. However, for floating loans, older loans have smaller
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value transfers. This is because there are more remaining periods with a difference in cash
flows before loan maturity.

Credit score is an important predictor of the value transfer for fixed loans, but not for
floating loans. This may be due to the lower chance of prepayment from loans with a lower
credit score, as found in Table 1.7. Higher values for LTV at origination values correlate with
higher value transfers. Higher LTVs correspond newer loans which have longer remaining
lives. The ARM margin does not predict significantly different value transfers for either fixed
or floating loans.

The fact that LTV correlates strongly with age suggests that the results in Table 1.10 are
driven by correlations with important drivers of heterogeneity in the loan size. To address
this concern and control for the relationships between alternative predictors of the value
transfer, we regress the value transferred as a fraction of unpaid balance on the conversion
date relative to the 30 basis point baseline on mortgage characteristics as of the origination
date. Table 1.11 contains the results of this regression.

Contrary to the descriptive exercise of Table 1.10, we find that the margin has a significant
impact on the size of the transfer. Loans with a large ARM margin experience smaller
transfers, all else equal. This may be due to differences in credit quality which are not
captured in the credit score but are reflected in the margin. Loans with a larger balance as
of the conversion date have smaller value transfers, due to the increased prepayment rate of
these loans described is Table 1.7. The value transfer is regressive, due to the increased value
transfer for smaller loans for borrowers with lower credit scores.

1.6.2 Alternative Mortgage Risk Premium

In Section 1.5.4, we calibrated p, the mortgage risk premium used in discounting, by pricing
a set of representative loans at 102% of par. We found heterogeneity in the estimated value
for ;1 both across time and across alternative representative loans. In our baseline estimates,
we report the average value transfer as the average value transfer implied by the range of
estimated values for p across alternative representative loans issued in the month of the
conversion.

Figure 1.8 demonstrates the total value transferred across alternative values for p. The
range of the values for u considered spans the minimum and maximum values estimated
across all loans and all time periods discussed in Section 1.5.4. We find there is a small,
nearly-linear sensitivity to p in the size of the value transfer, with a 1% increase in p leading
to a decrease of $17.83 million (0.04% of the balance of the pool) in the size of the value
transfer.

1.6.3 Alternative Constant Spread Adjustments

In Section 1.5.3 we discuss our reasoning for basing our estimates of the realized value
transfer on the difference in the present value of the loan cash flows when the constant
spread adjustment is 71.513 basis points, as imposed by the Federal Reserve, and when
the constant spread adjustment is 30 basis points, the historical premium imposed in the
ARM margins of Treasury-indexed ARMs relative to LIBOR-indexed ARMs. Figure 1.6
shows that this premium varies over time. Following the 2008 recession, the premium applied

43



Table 1.11: Baseline Value Transfer Regression

Fixed Loans

Floating Loans

Original Credit Score (/100)

Loan Age (Years)

ARM Margin (%)

2 Year Fixed Period

3 Year Fixed Period

5 Year Fixed Period

—1.27 x 1073%**
(1.25 x 107°)

6.92 x 10~ 3+
(1.68 x 1073)

—2.06 x 1074**
(8.64 x 107°)

—1.42 x 10~ 2>

—5.25 x 10~ 4**
(1.23 x 107?)

—1.42 x 1074+
(1.57 x 1076)

6.22 x 1075**
(2.48 x 107?)

5.67 x 10~4
(1.20 x 1073)

—5.06 x 10— 4***
(4.66 x 10)

—8.60 x 10~ 4***

(3.37 x 1073) (3.58 x 107?)
7 Year Fixed Period —2.50 x 1072***  2.08 x 10 3**~
(6.72 x 107?) (3.56 x 107?)
10 Year Fixed Period —4.22 x 10729 4,30 x 1073***
(1.18 x 1072) (4.04 x 107?)
LTV as of Conversion Date (%) —1.08 x 1075 —1.57 x 1075***
(3.09 x 1077) (5.53 x 1077)
Balance as of Conversion Date ($1,000) —7.27 x 10~ 7**  —1.83 x 10~ 6***
(7.32 x 1079) (2.27 x 1078)
Time to Floating (Years) 5.35 x 1073+ —
(1.68 x 1073)
Constant -3.19x107? 1.50 x 1072***
(4.99 x 1073) (1.23 x 1074)
Observations 60,430 39,556
R-squared 0.8933 0.7201

Robust standard errors in parentheses
**p < 0.01, *p < 0.05, *p < 0.1
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Figure 1.8: Value Transfer for Alternative Mortgage Risk Premium Estimates
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to Treasury-indexed ARMs relative to LIBOR-indexed ARMs fell to between zero and 20
basis points. Here, we consider the sensitivity of our model to alternative values for the fair
constant spread adjustment.

Figure 1.9: Distribution of Value Transfers for Alternative Fair Spread Adjustments
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Note: Result based on 100,000 simulations.

In Figure 1.9 we display estimates of the value transfer given alternative constant spread
adjustments of 10, 20, and 30 basis points. Summary statistics for the value transfer under
these alternatives are also shows in Table 1.9. In each case the estimated value transfer is the
difference between the present value of the cash flows under the 71.513 basis point spread and
the relevant alternative spread. Smaller alternative constant spread adjustments correspond
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with larger value transfers due to the larger difference between the Fed-imposed spread and
the alternative constant spread. This effect is larger for loans with higher sensitivity to
the interest rate, leading to larger differences in the value transfer under alterative spread
adjustments for loans that experience a large value transfer in the baseline specification. The
total estimated value transfer due to the cramdown is estimated at $369.61 million when the
alternative spread is 10 basis points, $309.09 million when the alternative spread is 20 basis
points, and $248.73 million when the alternative spread is 30 basis points.

1.6.4 Caps and Floors Sensitivity

As discussed in Section 1.4.1, the encoding of caps and floors in our data requires some
assumptions to apply those constraints to our simulation. It is possible that we have incorrectly
applied caps and floors in our data, and that this has a large impact on our estimates for the
value transfer. The caps and floors impact our analysis in two ways. The first is the size of
the cash flow when the cap or floor on the interest rate is binding. The second is that when
the caps or floors bind, we discount the entire cash flow using Term SOFR rates instead of
discounting the fixed portion of the interest payment using the implied forward rates. In this
section we estimate the value transfer absent any caps or floors on the loans in our sample at
assess their impact on this analysis.

The second row of Figure 1.10 displays the distribution of estimated value transfers for
fixed and floating ARMs under the assumption that loans have no caps or floors. This
distribution closely resembles that of the baseline specification, though it is slightly shifted
to the right. Table 1.9 quantifies this shift, showing that the estimated value transfer is
approximately 10% larger in the absence of caps and floors.

This increase arises because a substantial share of loans in the sample encounter binding
period rate caps at their first post-conversion reset. For example, one-year LIBOR rose from
3.62% on June 30, 2022, to 6.04% on June 30, 2023. Since 45.25% of the loans carry a 2%
period rate cap, many were constrained during the first year after conversion. When the cap
binds, cash flows are identical across alternative constant spread adjustments. Because this
binding occurs at the earliest resets—when differences in cash flows are least attenuated by
discounting—the effect amplifies the estimated value transfer in the capped specification.

1.6.5 Alternative Specification of Prepayment and Default

In our simulations of the cash flows, the average aggregate probabilities for prepayment
and default for the entire loan pool change over time. Figure 1.3 shows the annualized
probabilities of prepayment and default given our logit specification for a representative loan.
When simulating the loan pool, the aggregate prepayment and default risk decrease over time
because the riskiest loans prepay or default early in the simulation and because the logit
model predicts less hazard risk as loans age. This effect results in the highest prepayment
and default rates early in the life of a loan, when the cash flows have the biggest impact on
the value transfer due to discounting.

By comparing the value of the cash flows under alternative constant spread adjustments to
Term SOFR while simulating prepayment and default, we may be understating the size of the
value transfer. Our model does not explicitly price the value of the prepayment option, which
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Figure 1.10: Distribution of Value Transfer Under Alternative Specifications
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can change with the current note rate of the loan (see Agarwal, Driscoll, and Laibson (2013)
for example). The note rate is in turn impacted by the constant spread. To address this
concern, we simulate the value of the loans under our estimated fair spread adjustment and
the Fed-imposed spread adjustment without prepayment or default risk. The resulting value
transfer can be interpreted as the present value of the change in the total debt burden for
households which cannot prepay and do not default. This analysis also serves as a robustness
check for our logit hazard model.

Figure 1.10 shows the distribution of the value transfer for all loans assuming there is
no prepayment or default. Table 1.9 documents descriptive statistics of our estimated value
transfer under this specification. Absent prepayment and default, the total value transfer
is estimated at $1.28 billion, which is 2.54% of the balance of the loans in our pool. The
large increase in the value transfer for fixed loans relative to the baseline scenario is due to
the inability of loans to refinance or default prior to floating. There is no fixed ARM in this
specification which does not experience a change in value due to the LIBOR conversion.

1.6.6 Extension

In our primary analysis we focus on prime, first-lien mortgages for primary residence and
resetting every 12 months. We also require the loans to be conventional without PMI and
that the loans are not IO or balloon. This subset of loans permits us to accurately model
prepayment and default behavior by estimating a logit model on a similar subset of loans.
However, the total balance of the pool of loans we consider in McDash is only $50.5 billion.
This is in stark contrast with the estimate of $800 billion in open, LIBOR-linked loans
provided in Alternative Reference Rates Committee (2021).

We found that the value transfer totaled $248.73 million, which is 0.49% of the principal.
If we apply that 0.49% estimate to the total ARRC-estimated value of LIBOR loans as of the
conversion date ($800 billion), we find that the value transfer can be as large as $3.94 billion.
Without prepayment or default, the estimated value transfer in our sample was $1.28 billion,
which is 2.54% of the sample balance. Applying the 2.54% to the $800 billion estimate, we
find that the value transfer could have been as large as $20.30 billion.

There are several reasons why the application of our estimated value transfer as a fraction
of principal does not apply to loans outside of our sample. For subprime loans, we would
expect the value transfer to depend on the forecasted prepayment and default behavior, which
will not be accurately captured in our logit model described in Section 1.5.1. 10 loans will
likely have a larger value transfer than the loans in our sample. 10 loans do not amortize
during the IO portion of the loan. Therefore the difference in cash flows under different
constant spread adjustments is larger over time than it is for loans which do amortize. We
provide these numbers as indications for how big the value transfer may have been rather
than precise estimates of how large it was.

1.7 Conclusion

LIBOR was last published on June 30, 2023. After that date, open LIBOR-indexed contracts
needed a suitable replacement for LIBOR. The Federal Reserve bore the responsibility to
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select that replacement for a wide variety of different contracts, including derivatives, business
loans, securitizations, and ARMs. For ARMs lacking fallback language which specified a
replacement index, the Federal Reserve imposed that Term SOFR would be the new index.
This change had economic consequences because Term SOFR lacks many risk premiums which
are included in LIBOR. To address the level difference between Term SOFR and LIBOR, the
Federal Reserve added a constant to the Term SOFR index used as a replacement.

We find that the Federal Reserve’s imposed constant (71.513 basis points), based on
historical spreads between LIBOR and Term SOFR, exceeded the historical premium for
mortgages indexed to an index similar to Term SOFR. We estimate this historical premium
to be 30 basis points. The 41.513 basis point difference in the spread results in an extra
$248.73 million in estimated cash flows from the mortgages. This represents an increase in
the value of the mortgages, at the expense of borrowers. This effect is largest among ARMs
which were floating as of June 30, 2023, because they are immediately subject to the too-high
constant spread adjustment that was imposed. We also find that the value transfer is larger
for loans with low credit scores, perhaps because they are unable to obtain refinancing to
prepay the loan. Indeed, in an extension where there is no prepayment or default, we find
that the total value transfer is estimated at $1.28 billion, representing a 2.54% increase in
the debt burden for borrowers who are unable to prepay and do not default.

Our estimates for the size of the value transfer are sensitive to several assumptions we
made, including the risk premium due to prepayment and default risk which is used to
discount cash flows, as well as the premium which the market assigns to ARMs indexed to a
rate which does not incorporate the same risk premiums that are reflected in LIBOR. This
sensitivity highlights the importance of using market prices to determine a value-preserving
spread, suggesting that the historical median spread used by the Federal Reserve for ARMs
does not preserve mortgage valuation.

These results point to broader concerns—ARMs are only a small subset of the estimated
open LIBOR-indexed financial contracts. This chapter emphasizes the importance of using
market-based (rather than historically-based) data in applications of eminent domain, or any
case of a repricing by fiat. It also highlights the importance of robust fallback language in
financial contracts, in case a relevant index is deemed untrustworthy:.

49



References

Agarwal, S., J. C. Driscoll, and D. I. Laibson (2013). “Optimal Mortgage Refinancing: a
Closed-form Solution”. In: Journal of Money, Credit and Banking 45.4, pp. 591-622.
Alternative Reference Rates Committee (Mar. 2021). Progress Report: the Transition from

U.S. Dollar LIBOR. Tech. rep. Accessed: 2025-07-09. Federal Reserve Bank of New York.

Bowman, D. (July 2019). “Historical Proxies for the Secured Overnight Financing Rate”. In:
FEDS Notes.

Bucks, B. and K. Pence (2008). “Do Borrowers Know Their Mortgage Terms?” In: Journal of
Urban Economics 64.2, pp. 218-233.

CME Group Benchmark Administration Limited (Feb. 2025). CME Term SOFR Reference
Rates Benchmark Methodology. Technical Report. Available at https://www.cmegroup.
com/market-data/files /cme-term-sofr-reference-rates-benchmark-methodology.pdf. CME
Group.

Cooperman, H., D. Duffie, S. Luck, Z. Wang, and Y. Yang (2025). “Bank Funding Risk,
Reference Rates, and Credit Supply”. In: The Journal of Finance 80.1, pp. 5-56.

Cox, J. C., J. E. Ingersoll, S. A. Ross, et al. (1985). “A Theory of the Term Structure of
Interest Rates”. In: Econometrica 53.2, pp. 385-407.

Diebold, F. X. and C. Li (2006). “Forecasting the Term Structure of Government Bond
Yields”. In: Journal of Econometrics 130.2, pp. 337-364.

Fuster, A., S. H. Lo, and P. S. Willen (2024). “The Time-varying Price of Financial Interme-
diation in the Mortgage Market”. In: The Journal of Finance 79.4, pp. 2553-2602.

Fuster, A. and P. S. Willen (2017). “Payment Size, Negative Equity, and Mortgage Default”.
In: American Economic Journal: Economic Policy 9.4, pp. 167-191.

Gupta, A. and C. Hansman (Apr. 2021). “Selection, Leverage, and Default in the Mortgage
Market”. In: The Review of Financial Studies 35.2, pp. 720-770.

Heitfield, E. and Y.-H. Park (2019). Inferring Term Rates from SOFR Fulures Prices. Tech.
rep. 2019-014. Washington: Board of Governors of the Federal Reserve System.

Jermann, U. (2024). “Interest Received by Banks During the Financial Crisis: LIBOR Vs
Hypothetical SOFR Loans”. In: Journal of Financial Services Research 65.2, pp. 141-152.

King, G. and L. Zeng (2001). “Logistic Regression in Rare Events Data”. In: Political analysis
9.2, pp. 137-163.

Nelson, C. R. and A. F. Siegel (1987). “Parsimonious Modeling of Yield Curves”. In: Journal
of Business, pp. 473-4809.

Richard, S. F. and R. Roll (1989). “Prepayments of Fixed-rate Mortgage-backed Securities”.
In: Journal of Portfolio management 15.3, p. 73.

Skov, J. B. and D. Skovmand (2023). “Decomposing LIBOR in Transition: Evidence from
the Futures Markets”. In: Quantitative Finance 23.6, pp. 959-978.

50



Appendices to Chapter 1

1.A The Federal Reserve’s LIBOR-SOFR Spread Adjust-
ment

The ARRC determined its recommended spread adjustment by first constructing a historical
proxy for SOFR and Term SOFR using RP rates. Proxies were necessary because official SOFR
data was only published starting in April 2018, and Term SOFR was not introduced until
July 2021. Using actual and proxy SOFR data, the Federal Reserve compounded overnight
rates to approximate Term SOFR for various maturities. The ARRC then calculated the
five-year median spread between the proxy Term SOFR and the corresponding LIBOR tenor
over the period March 5, 2016 — March 5, 2021. The results, shown in Table 1.12, are the
basis for the recommended adjustments following a one-year phase-in''. For example, a
contract originally indexed to 12-month LIBOR was converted to one-year Term SOFR plus
71.513 basis points.

Table 1.12: ARRC-Recommended Term SOFR Constant Spread Adjustments

Tenor Spread Adjustment
(Basis Points)

Overnight 0.644

One Week 3.839

One Month 11.448
Two Month 18.456
Three Month 26.161
Six Month 42.826
One Year 71.513

"The constant spread adjustment started as the average realized spread for 10 days prior to the conversion
day and converged to the spreads in Table 1.12 linearly over the first year. Our simulation code reflects this
one-year adjustment.
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1.B  No-Arbitrage Proofs

In this section we prove through no-arbitrage arguments that Term SOFR rates are approxi-
mately equal to Treasury rates of matching maturities. This justifies our use of the spread
between the margin on Treasury- and LIBOR-indexed ARMs as a fair spread adjustment
for LIBOR-indexed ARMs with the index changed to Term SOFR. We then make a similar
no-arbitrage argument that absent prepayment and default risk, the appropriate discount rate
for the floating component of the interest on a Term-SOFR indexed ARM is Term SOFR.

Term SOFR Rates Approximately Equal Treasury Rates

Suppose at date 0 an investor wishes to lock in rates for a risk-free investment of principal P
at date X with maturity 7. There are two contracts available to do so: a Treasury forward
contract and a SOFR futures contract.

For the Treasury forward contract, suppose the forward rate is F7(0, X, T). In that case,
at date X the investor can invest P and receive a risk-free cash flow of P(1+ F7(0, X,T)) at
date T'. Similarly, if the SOFR futures rate is F°(0, X, T), at date X the investor can invest
P and receive a cash flow of P(1+ F¥(0,X,T)) at date T.

We now show that as of date X, the return on each of these investments is approximately
equal. Consider borrowing P in the overnight RP market at date X to finance the long
position in either the Treasury forward or the SOFR future. Continue rolling this debt
forward at overnight RP rates until date T. The cost of financing is

T

[T +Rp)),

i=X
where RP; is the overnight RP rate (SOFR) on date i. By definition, the payoff from the
SOFR futures contract exactly covers this financing cost at maturity 7. In addition, because
this overnight compounding is approximately risk-free, the payoff from the Treasury forward
also covers the position. Thus,

T
F'(0,X,T) ~ F5(0,X,T) = [ [(1+ RP;) — 1.
i=X

There are a couple of differences between Treasury rates and compounded overnight
RP rates which prevent total equality of Treasury forward rates and SOFR futures rates.
Treasuries are more liquid (which influences pricing), and holding a Treasury to maturity
avoids the interest rate risk inherent in rolling overnight RP rates forward. However, there
would be arbitrage if rolling RP rates systematically differed from the return on Treasury
bills. Because Term SOFR is based on SOFR futures, by setting X = 0 we conclude that
Term SOFR is approximately equal to Treasury rates.

Discount Rate for Riskless Contracts Indexed to Term SOFR

Loans in our analysis have a fixed and a floating component to the interest rate. The fixed
component is due to the margin and the constant spread adjustment; the floating component
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comes from the Term SOFR index. Each component is subject to prepayment and default
risk; but the component indexed to Term SOFR carries additional interest rate risk. We
establish here that this component prices at par absent prepayment and default risk. In
Section 1.3.3 we address the how to correct for the premium we assign to prepayment and
default risk which is then calibrated in Section 1.5.4.

Consider a one-period loan with no risk of prepayment or default, with a floating rate
indexed to Term SOFR. Specifically, assume that at date ¢ = 1 the loan pays P(1 +
Term SOFR(0)). To determine the value of this contract at ¢ = 0, suppose that the value is
P — D. There is now possible arbitrage if D # 0. Lend P — D worth of debt at ¢ = 0 using
this contract. To cover the cost of this investment, borrow P — D in an overnight repurchase
agreement, and keep rolling forward the debt until ¢ = 1.

From the Term SOFR-indexed loan, the expected cash flow will be P(1+ Term SOFR(0)).
The cost of the debt, having rolled overnight RPs forward until ¢ = 1, is the product of
the overnight RP rates. By definition, the date 0 expected cost of the debt would be
—(P — D)Term SOFR(0). Therefore, the expectation of the profit from this strategy is
DTerm SOFR(0).

This is not a true arbitrage because the net cash flow is positive only in expectation,
rather than with certainty. Unexpected fluctuations in the overnight RP rate can cause this
to be a losing portfolio. The positive expected cash flow compensates for interest rate risk.
We assume there is no interest rate risk and therefore conclude that a cash flow indexed to
Term SOFR will price at par through one-period discounting. Over short time periods, such
as month-to-month with the ARMs, the assumption of no interest rate risk is reasonable.
Therefore, the appropriate discount rate for a date ¢ + 1 floating cash flow determined by
Term SOFR(0) and without prepayment or default risk is Term SOFR(0). This result is
applied to price the floating component of cash flows in Section 1.3.3, where we also account
for prepayment and default risk.
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