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Problem Statement Data & Scope

Context: Wayfair is an e-commerce company that sells the world’s largest online
selection of home goods. We are focusing on suppliers who compete with each other in
Wayfair Sponsored Product (WSP) auctions to win sponsored slots.

Scope: Wayfair Sponsored Product | Worldwide | 2022 - 2024
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® Network effect: interactions and interventions within the treatment group can e

unintentionally influence the control group s

Goal ~ 2 Trillion ~ 3600

® Build a network clustering model to identify independent groups of suppliers Rows of Auction Data on a Suppliers
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We identified ideal clusters by considering the following metrics: Alternative Wayfair can apply treatments to
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